ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:803.54KB ,
资源ID:9997058      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9997058.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(六级奥数表面积和体积计算题.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

六级奥数表面积和体积计算题.doc

1、六级奥数表面积和体积计算题正式版 表面积与体积练习和答案 专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。 在解答立体图形的表面积问题时,要注意以下几点: (1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。 (2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。反之,把两个立体图形粘合到一起,减少的表面积

2、等于粘合面积的两倍。 (3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。 例1.从一个棱长为10里面的正方体上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少? 【思路导航】这是一道开放题,方法有多种: 1) 沿一条棱挖,剩下部分的表面积为592平方厘米。 2) 在某个面挖,剩下部分的表面积为632平方厘米。 3) 挖通某两个对面,剩下部分的表面积为672平方厘米。 练习1. 1.把一个长为12分米、宽为6分米、高为9分米的长方体木块锯成两个相同的

3、小长方体木块,这两个小长方体的表面积之和比原来长方体的表面积增加了多少平方米? 2.在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面机会发生怎样的变化? 例2.把19个棱长为3厘米的正方体重叠起来,拼成一个立体图形,求这个立体图形的表面积。 【思路导航】要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形。 练习2: 1、用棱长是1厘米的立方体拼成图27-6所示的立体图形。求

4、这个立体图形的表面积。 2、一堆积木(如图27-7所示),是由16块棱长是2厘米的小正方体堆成的。它们的表面积是多少平方厘米? 3、一个正方体的表面积是384平方厘米,把这个正方体平均分割成64个相等的小正方体。每个小正方体的表面积是多少平方厘米? 例3.把两个长、宽、高分别是9厘米、7厘米、4厘米的相同的长方体,拼成一个大长方体,这个大长方体的表面积最少是多少平方厘米? 【思路导航】把两个相同长方体拼成一个大长方体,需要把两个相同面拼合,所得大长方体的边面积就是减少了两个拼合面的面积。要是大长方体的表面积最小,就必须使两个品河面的面积最大,即减少两个9×7的面。 (

5、9×9+9×4+7×4)×2×2—9×7×2 =(63+36+28)×4—126 =508—126 =382(平方厘米) 答:这个大厂房体的表面积最少是382平方厘米。 练习3: 1、把底面积为20平方厘米的两个相等的正方体拼成一个长方体,长方体的表面积是多少? 2、将一个表面积为30平方厘米的正方体等分成两个长方体,再将这两个长方体拼成一个大长方体。求大长方体的表面积是多少。 3、用6块(如图所示)长方体木块拼成一个大长方体,有许多种做法,其中表面积最小的是多少平方厘米? 例题4:一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90

6、立方厘米;如果高增加4厘米,则体积增加96立方里,求原长方体的表面积。 我们知道:体积=长×宽×高;由长增加2厘米,体积增加40立方厘米,可知宽×高=40÷2=20(平方厘米);由宽增加3厘米,体积增加90立方厘米,可知长×高=90÷3=30(平方厘米);由高增加4厘米,体积增加96立方厘米,可知长×宽=96÷4=24(平方厘米)。而长方体的表面积=(长×宽+长×高+宽×高)×2=(20+30+24)×2=148(平方厘米)。即 40÷2=20(平方厘米);90÷3=30(平方厘米);96÷4=24(平方厘米) (30+20+24)×2=74×2=148(平方厘米) 答:原长方体的表面

7、积是148平方厘米。 练习4: 1、一个长方体,如果长减少2厘米,则体积减少48立方厘米;如果宽增加5厘米,则体积增加65立方厘米;如果高增加4厘米,则体积增加96立方厘米。原来厂房体的表面积是多少平方厘米? 2、一个厂房体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,其表面积减少了120平方厘米。原来厂房体的体积是多少立方厘米? 3、有一个厂房体,它的正面和上面的面积之和是209。如果它的长、宽、高都是质数,这个长方体的体积是多少? 例题5:如图27-10所示,将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体。求这个

8、物体的表面积。 如果分别求出三个圆柱的表面积,再减去重叠部分的面积,这样计算比较麻烦。实际上三个向上的面的面积和恰好是大圆柱的一个底面积。这样,这个物体的表面积就等于一个大圆柱的表面积加上中、小圆柱的侧面积。 3.14×1.5×1.5×2+2×3.14×1.5×1+2×3.14×1×1+2×3.14×0.5×1 =3.14×(4.5+3+2+1) =3.14×10.5 =32.97(平方米) 答:这个物体的表面积是32.97平方米。 练习5: 1、一个棱长为40厘米的正方体零件(如图27-11所示)的上、下两个面上,各有一个直径为4厘米的圆孔,孔深为10厘米。求这个零件

9、的表面积。 2、用铁皮做一个如图27-12所示的工件(单位:厘米),需用铁皮多少平方厘米? 3、如图27-13所示,在一个立方体的两对侧面的中心各打通一个长方体的洞,在上、下侧面的中心打通一个圆柱形的洞。已知立方体棱长为10厘米,侧面上的洞口是边长为4厘米的正方形,上、下侧面的洞口是直径为4厘米的圆,求该立方体的表面积和体积(∏取3.14)。 答案: 练1 切下一块后,切口处的表面减少了前、后、上面3个1×1的正方形,新增加了左右下面三个1×1的正方形,所以表面积大小不变。 4×4×6-2×2×2=92平方厘米 中心挖去的洞的体积是:12×3×3-13×2=7立方厘米,挖

10、洞后木块的体积:33-7=20立方厘米,中心挖洞后每面增加的面积是12×4-12=3平方厘米,挖洞后木块的表面积:(32+3)×6=72平方厘米。 练2 (1×1×12+1×1×8+1×1×7)×2=54平方厘米 (2×2×9+2×2×9+2×2×7)×2=200平方厘米 因为64=4×4×4,所以大正方形的棱长等于小正方形棱长的4被,那么大正方体的表面积是小正方体的4×4=16倍,小正方体的表面积是:384÷16=24平方厘米 练3 将正方体分为两个长方体,表面积就增加了2个30÷6=15平方厘米,拼成大正方体,表面积将减少两个拼合面的面积,正好是1个30÷6=15平方厘

11、米,所以大长方体的表面积是30+30+6=35平方厘米。 要是表面积最小,就要尽可能地把大的面拼合在一起。表面积最小的拼法有如图答27-2两种:表面积都是(3×3+3×4×2)×2=66平方厘米。 设大长方体的宽和高为x分米,长为2x分米,左面和右面的面积就是x2平方分米。其余的面积为2x2平方分米,根据题意,大长方体的表面积是:8x2+8×2x2=600 x=5 大长方体的体积是:5×5×2×5=250立方分米 练4 1、(48÷2+65÷5+96÷4)×2=122平方厘米 2、减少的表面积实质是高度分别为2厘米和3厘米的前、后、左、右四个面的面积之和。把两个合并起来,用12

12、0÷(2+3)=24厘米,求到正方体底面的周长,正方体的棱长就是24÷4=6厘米。圆长方体的体积是:6×6×(6+3+2)=396立方厘米 3、长方体正面及上面的面积之和恰好等于这个长方体的长×(宽+高),209=11×19,所以长=11,宽+高=19,或长=19,宽+高=11,根据题意,宽和高只能是17和2,长方体的体积就是11×17×2=374 练5 402×6+3.14×4×10×2=9651.2平方厘米 用两个同样的工件可拼成图答27-3的圆柱体。 3.14×15×(46+54)÷2=2355平方厘米 3、立方体的表面积和是:6×102-42×4-2×3.14×()2=51

13、0.88平方厘米 打洞后增加的面积是: 3.14×4×(10-4)+4×(10-4)×4×2+42×2-3.14×()2×2=274.24平方厘米 表面积是:510.88+274.24=785.12平方厘米 体积是:103-42×10×2+43-3.14×()2×(10-4)=668.64平方厘米 表面积与体积练习和答案 专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时

14、要认真细致观察,合理大胆想象,正确灵活地计算。 在解答立体图形的表面积问题时,要注意以下几点: (1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。 (2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。 (3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。 例1.从一个棱长为10里面的正方体上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少? 【思路导航】这是一道开放题,方

15、法有多种: 4) 沿一条棱挖,剩下部分的表面积为592平方厘米。 5) 在某个面挖,剩下部分的表面积为632平方厘米。 6) 挖通某两个对面,剩下部分的表面积为672平方厘米。 练习1. 1.把一个长为12分米、宽为6分米、高为9分米的长方体木块锯成两个相同的小长方体木块,这两个小长方体的表面积之和比原来长方体的表面积增加了多少平方米? 2.在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面机会发生怎样的变化? 例2.把19个棱长为3厘米的正方体重叠起来,拼成一个立体图形,求这个立体图形的表面积。 【思路导航】要求这个复杂形体的表面积,必须从整体入

16、手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形。 练习2: 1、用棱长是1厘米的立方体拼成图27-6所示的立体图形。求这个立体图形的表面积。 2、一堆积木(如图27-7所示),是由16块棱长是2厘米的小正方体堆成的。它们的表面积是多少平方厘米? 3、一个正方体的表面积是384平方厘米,把这个正方体平均分割成64个相等的小正方体。每个小正方体的表面积是多少平方厘米? 例3.把两个长、宽、高分别是9厘米、7厘米、4厘米

17、的相同的长方体,拼成一个大长方体,这个大长方体的表面积最少是多少平方厘米? 【思路导航】把两个相同长方体拼成一个大长方体,需要把两个相同面拼合,所得大长方体的边面积就是减少了两个拼合面的面积。要是大长方体的表面积最小,就必须使两个品河面的面积最大,即减少两个9×7的面。 (9×9+9×4+7×4)×2×2—9×7×2 =(63+36+28)×4—126 =508—126 =382(平方厘米) 答:这个大厂房体的表面积最少是382平方厘米。 练习3: 1、把底面积为20平方厘米的两个相等的正方体拼成一个长方体,长方体的表面积是多少? 2、将一个表面积为30平方厘米的正方体等分成

18、两个长方体,再将这两个长方体拼成一个大长方体。求大长方体的表面积是多少。 3、用6块(如图所示)长方体木块拼成一个大长方体,有许多种做法,其中表面积最小的是多少平方厘米? 例题4:一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方里,求原长方体的表面积。 我们知道:体积=长×宽×高;由长增加2厘米,体积增加40立方厘米,可知宽×高=40÷2=20(平方厘米);由宽增加3厘米,体积增加90立方厘米,可知长×高=90÷3=30(平方厘米);由高增加4厘米,体积增加96立方厘米,可知长×宽=96÷4=24

19、平方厘米)。而长方体的表面积=(长×宽+长×高+宽×高)×2=(20+30+24)×2=148(平方厘米)。即 40÷2=20(平方厘米);90÷3=30(平方厘米);96÷4=24(平方厘米) (30+20+24)×2=74×2=148(平方厘米) 答:原长方体的表面积是148平方厘米。 练习4: 1、一个长方体,如果长减少2厘米,则体积减少48立方厘米;如果宽增加5厘米,则体积增加65立方厘米;如果高增加4厘米,则体积增加96立方厘米。原来厂房体的表面积是多少平方厘米? 2、一个厂房体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,其表面积减少了

20、120平方厘米。原来厂房体的体积是多少立方厘米? 3、有一个厂房体,它的正面和上面的面积之和是209。如果它的长、宽、高都是质数,这个长方体的体积是多少? 例题5:如图27-10所示,将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体。求这个物体的表面积。 如果分别求出三个圆柱的表面积,再减去重叠部分的面积,这样计算比较麻烦。实际上三个向上的面的面积和恰好是大圆柱的一个底面积。这样,这个物体的表面积就等于一个大圆柱的表面积加上中、小圆柱的侧面积。 3.14×1.5×1.5×2+2×3.14×1.5×1+2×3.14×1×1+2×3.14×0.5×1

21、 =3.14×(4.5+3+2+1) =3.14×10.5 =32.97(平方米) 答:这个物体的表面积是32.97平方米。 练习5: 1、一个棱长为40厘米的正方体零件(如图27-11所示)的上、下两个面上,各有一个直径为4厘米的圆孔,孔深为10厘米。求这个零件的表面积。 2、用铁皮做一个如图27-12所示的工件(单位:厘米),需用铁皮多少平方厘米? 3、如图27-13所示,在一个立方体的两对侧面的中心各打通一个长方体的洞,在上、下侧面的中心打通一个圆柱形的洞。已知立方体棱长为10厘米,侧面上的洞口是边长为4厘米的正方形,上、下侧面的洞口是直径为4厘米的圆,求该立方体的表面

22、积和体积(∏取3.14)。 答案: 练1 切下一块后,切口处的表面减少了前、后、上面3个1×1的正方形,新增加了左右下面三个1×1的正方形,所以表面积大小不变。 4×4×6-2×2×2=92平方厘米 中心挖去的洞的体积是:12×3×3-13×2=7立方厘米,挖洞后木块的体积:33-7=20立方厘米,中心挖洞后每面增加的面积是12×4-12=3平方厘米,挖洞后木块的表面积:(32+3)×6=72平方厘米。 练2 (1×1×12+1×1×8+1×1×7)×2=54平方厘米 (2×2×9+2×2×9+2×2×7)×2=200平方厘米 因为64=4×4×4,所以大正方

23、形的棱长等于小正方形棱长的4被,那么大正方体的表面积是小正方体的4×4=16倍,小正方体的表面积是:384÷16=24平方厘米 练3 将正方体分为两个长方体,表面积就增加了2个30÷6=15平方厘米,拼成大正方体,表面积将减少两个拼合面的面积,正好是1个30÷6=15平方厘米,所以大长方体的表面积是30+30+6=35平方厘米。 要是表面积最小,就要尽可能地把大的面拼合在一起。表面积最小的拼法有如图答27-2两种:表面积都是(3×3+3×4×2)×2=66平方厘米。 设大长方体的宽和高为x分米,长为2x分米,左面和右面的面积就是x2平方分米。其余的面积为2x2平方分米,根据题意,大长方

24、体的表面积是:8x2+8×2x2=600 x=5 大长方体的体积是:5×5×2×5=250立方分米 练4 1、(48÷2+65÷5+96÷4)×2=122平方厘米 2、减少的表面积实质是高度分别为2厘米和3厘米的前、后、左、右四个面的面积之和。把两个合并起来,用120÷(2+3)=24厘米,求到正方体底面的周长,正方体的棱长就是24÷4=6厘米。圆长方体的体积是:6×6×(6+3+2)=396立方厘米 3、长方体正面及上面的面积之和恰好等于这个长方体的长×(宽+高),209=11×19,所以长=11,宽+高=19,或长=19,宽+高=11,根据题意,宽和高只能是17和2,长方体的

25、体积就是11×17×2=374 练5 402×6+3.14×4×10×2=9651.2平方厘米 用两个同样的工件可拼成图答27-3的圆柱体。 3.14×15×(46+54)÷2=2355平方厘米 3、立方体的表面积和是:6×102-42×4-2×3.14×()2=510.88平方厘米 打洞后增加的面积是: 3.14×4×(10-4)+4×(10-4)×4×2+42×2-3.14×()2×2=274.24平方厘米 表面积是:510.88+274.24=785.12平方厘米 体积是:103-42×10×2+43-3.14×()2×(10-4)=668.64平方厘米 多边

26、形计算公式土建工程师计算公式大全 序号 名称 规格 外径 长度 面积 壁厚 重量 总重量 备注 单位(㎜) 单位(m) 单位(㎡) 单位(㎜) 单位(kg) 单位(kg) 1 焊接钢管 DN15 21.3 1 0.067 2.75 1.26 1.258 2 焊接钢管 DN20 26.8 1 0.084 2.75 1.63 1.631 3 焊接钢管 DN25 33.5 1 0.105 3.25 2.42 2.425 4 焊接钢管 DN32 42.3 1 0.133 3.25 3.13

27、 3.130 5 焊接钢管 DN40 48 1 0.151 3.5 3.84 3.841 6 焊接钢管 DN50 60 1 0.189 3.5 4.88 4.877 7 焊接钢管 DN65 75.5 1 0.237 3.75 6.64 6.636 钢管表面积计算表 序号 名称 规格 外径 长度 面积 壁厚 重量 总重量 备注 单位(㎜) 单位(m) 单位(㎡) 单位(㎜) 单位(kg) 单位(kg) 1 无缝钢管 DN50 57 1 0.179 3.500 4.62 4.

28、618 2 无缝钢管 DN70 76 1 0.239 4.00 7.1 7.103 3 无缝钢管 DN80 89 1 0.280 4.00 8.38 8.385 4 无缝钢管 DN100 108 1 0.339 4.00 10.26 10.259 5 无缝钢管 DN125 133 1 0.418 4.00 12.72 12.726 6 无缝钢管 DN150 159 1 0.500 4.50 17.14 17.146 7 无缝钢管 DN200 219 1 0.688 6.00 31.52 31.518 8 无缝钢管 DN250 273 1 0.858 6.50 42.64 42.721 9 无缝钢管 DN300 325 1 0.021 7.50 58.72 58.726 10 无缝钢管 DN350 377 1 1.185 9.00 81.67 81.681

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服