ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:530.27KB ,
资源ID:9927346      下载积分:5 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9927346.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(3.湖南省名校联考联合体2023-2024学年高一上学期期末考试数学试题.docx)为本站上传会员【鱼**】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

3.湖南省名校联考联合体2023-2024学年高一上学期期末考试数学试题.docx

1、湖南省名校联考联合体2023-2024学年高一上学期期末考试数学试题 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知,那么(    ) A. B. C. D. 2.命题“”的否定是(    ) A. B. C. D. 3.将函数的图象向右平移个单位长度后,所得图象对应的函数为(    ) A. B. C. D. 4.三个数,,的大小关系是(    ) A. B. C. D. 5.函数的图象大致是(    ) A.   B.   C.   D.   6.已知角的终边在

2、直线上,则(    ) A. B. C. D.3 7.用二分法求函数的一个正零点的近似值(精确度为时,依次计算得到如下数据;,关于下一步的说法正确的是(    ) A.已经达到精确度的要求,可以取1.1作为近似值 B.已经达到精确度的要求,可以取1.125作为近似值 C.没有达到精确度的要求,应该接着计算 D.没有达到精确度的要求,应该接着计算 8.已知函数,其中.若在区间上单调递增,则的取值范围是(    ) A. B. C. D. 二、多选题 9.下列命题中,正确的是(    ) A.如果,,那么 B.如果,那么 C.若,,则 D.如果,,,那么 10.下

3、列各项不正确的是(    ) A. B. C. D. 11.已知,则(    ) A. B. C. D. 12.已知函数,且函数的图像如图所示,则(    ) A. B.若,则 C.已知,若为偶函数,则 D.若在上有两个零点,则的取值范围为 三、填空题 13.化简: . 14.《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧和弦所围成的图中阴影部分.若弧田所在扇形的圆心角为,扇形的面积为,则此弧田的面积为 . 15.函数的零点个数为 . 16.已知函

4、数,若,则实数的取值范围为 . 四、解答题 17.已知集合. (1)若,求实数的值; (2)“”是“”的充分不必要条件,求实数的取值范围. 18.已知. (1)若不等式的解集是,求实数的值; (2)若不等式对一切实数恒成立,求实数的取值范围. 19.已知,且均为锐角. (1)求的值; (2)求的值; (3)求的值. 20.大西洋鲑鱼每年都要逆流而上,游回产地产卵、研究鲑鱼的科学家发现鲑鱼的游速(单位:)满足方程,其中表示鲑鱼耗氧量的单位数,表示测量过程中鲑鱼的耗氧量偏差. (1)当一条鲑鱼的耗氧量为2700个单位时,它的游速为,求此时的值; (2)当甲

5、乙两条鲑鱼游速相同时,甲鲑鱼耗氧量偏差是乙鲑鱼耗氧量偏差的10倍,试问甲鲑鱼的耗氧量是乙鲑鱼耗氧量的多少倍? 21.已知函数. (1)求函数的单调递减区间; (2)求函数在区间的最大值和最小值; (3)荐在区间上恰有两个零点,求的值. 22.已知,,且为偶函数. (1)求实数的值; (2)若方程有且只有一个实数解,求实数的取值范围. 试卷第3页,共4页 参考答案: 1.D 2.A 3.D 4.B 5.A 6.A 7.C 8.A 9.AD 10.ABC 11.ABC 12.ACD 13. 14. 15.4 16. 17.(1)1 (

6、2) 【解析】(1)由可得,即, 若,则,解得. (2)因为“”是“”的充分不必要条件,可知Ü,则有: ①,解得; ②当时,即时,,不符合题意; ③当时,即时,,符合题意; 综上所述:实数的取值范围. 18.(1)1 (2) 【解析】(1)由题意可知,和3是方程的两根,且, 所以,解得. (2)由题可得,即对一切实数恒成立, 当时,不等式化为,不符合题意; 当时,有解得, 综上可知,实数的取值范围为. 19.(1) (2) (3)2 【解析】(1)由,可得,解得. (2). (3), 因为,所以, 又因为均为锐角,所以,而, 所以,故, 所以,

7、 所以. 20.(1) (2)9倍 【解析】(1)由题意可得:,解得,所以. (2)设乙鲑鱼耗氧量偏差为,乙鲑鱼的耗氧量为, 则甲鲑鱼耗氧量偏差为,甲鲑鱼的耗氧量为, 因为甲、乙两条鲑鱼游速相同,则, 化简得, 则,即,可得, 所以甲鲑鱼的耗氧量是乙鲑鱼耗氧量的9倍. 21.(1) (2), (3) 【解析】(1) . 由,可得, 即的单调递减区间为. (2)因为,所以, 所以,所以, 当时,即时,, 当时,即时,. (3)因为,所以,同理 由题意可得,. 即,所以, 所以,即可得, 因为,所以,所以, 所以, 因为,可设,则

8、 所以, 因为,且,所以, 所以. 22.(1) (2)或 【解析】(1)由,可知, 又为偶函数,所以有,即, 化简得,即, 所以,得. 经检验,当时,对任意成立,即满足为偶函数. 故所求的值为2. (2)由(1)可知,即方程有且只有一个实数解, 显然,所以上述方程可化为, 即方程有且只有一个实数解, 令且, 则关于的方程有且只有一个不为1和的正根, , ①当时,. (i)若,则方程化为, 此时方程的解为,符合题意. (ii)若,则方程化为, 此时方程的解为,不符题意,故舍去. ②当时,需满足即解得. 当时,即1为方程的解时,. 当时. 所以当方程有两根,有且只有一个不为1和的正根时,. 综上可知,当或时,方程有且只有一个实数解. 答案第5页,共5页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服