ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:48.54KB ,
资源ID:9797318      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9797318.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(二元一次方程讲义.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二元一次方程讲义.doc

1、 二元一次方程组一、知识要点梳理知识点一:二元一次方程的概念 含有两个未知数(一般设为x、y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方 程如xy24,都是二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. 如xy的次数是2,所以方程 6xy90不是二元一次方程.(3) 二元一次方程的左边和右边都必须是整式. 如方程的左边不是整式,所以它就不是二元一次方程.(4)判断某个方程是不是二元一次方程,一般先把它化为axbyc0的形式,再根据定义判断,例 如:2x4y32x

2、不是二元一次方程,因为通过移项,原方程变为4y3,不符合二元一次方程的形 式。 知识点二:二元一次方程的解能使二元一次方程左右两边的值都相等的两个未知数的值,叫做二元一次方程的解。由于使二元一 次方程的左右两边相等的未知数的值不只一个,故每个二元一次方程都有无数组解。如,都是二元一次方程xy3的解,我们把有无数组解的这样的方程又称 之为不定方程。要点诠释:(1)使二元一次方程两边的值相等的两个未知数的值,即二元一次方程的解都要用“”联立起来,如 ,是二元一次方程xy2的解(二元一次方程的解是一对数值,而不是一个数值)。(2)在二元一次方程的无数个解中,每个解的一对数值是相互联系、一一对应的。即

3、其中一个确定后, 另一个也随之确定并且唯一。知识点三:二元一次方程组的概念 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 例如, 都是二元一次方程组.要点诠释:如果两个一次方程合起来共有两个未知数,这样的方程组也是二元一次方程组。例如,也是二元一次方程组.知识点四:二元一次方程组的解 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组的解是一对数值,即 ,而不能表示成x9,y4.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组 的解有无数个.(3)检验一组数是否是二元一次方程组的解时,一定要将这一

4、组数代入方程组中的每一个方程,看是否 满足每一个方程,只有这组数是方程组中的所有方程的公共解时,该组数才是原方程组的解,否则不 是。知识点五:二元一次方程组的解法 消元法:所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。 即将未知数的个数由多化少,逐一解决的消元思想。消元法分代入消元法和加减消元法。(一)代入消元法1代入消元法是解方程组的两种基本方法之一。是把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种解法叫做代入消元法,简称代入法。2用代入法解二元一次方程组的一般步骤:(1)从

5、方程组中选一个系数比较简单的方程,用含一个未知数的代数式表示这个方程中的另一个未知数;(2)将变形后的这个关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求出一个未知数的值;(4)将求得的这个未知数的值代入变形后的关系式中,求出另一个未知数的值;(5)把求得的两个未知数的值用符号“”联立起来写成方程组的解的形式.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化 简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(二)加减消元法1加减消元法是解二元一次方程组的基本方

6、法之一,加减消元法是通过将两个方程相加(或相减)消去一个未知数,将二元一次方程组转化为一元一次方程来解,这种解法叫做加减消元法,简称加减法。2用加减法解二元一次方程组的一般步骤:(1)方程组中的两个方程,如果同一个未知数的系数既不相反又不相等,就可用适当的数去乘一 个方程或两个方程的两边,使两个方程中的某一个未知数的系数相反或相等;(2)把两个方程的两边分别相加减(相同时相减,相反时相加),消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得其中一个未知数的值;(4)把所求得的这个未知数的值代入到原方程组中系数比较简单的一个方程,求出另一个未知数的值;(4) (5)把求得的两个

7、未知数的值用符号“”联立起来写成方程组的解的形式。要点诠释:一般地,加减消元法的选择方法是:(1)选择系数绝对值较小的未知数消元;(2)某一未知数绝对值相等,如果符号不同,用加法消元,如果符号相同,用减法消元;(3)某一未知数系数成倍数关系时,直接对其中一个方程变形,使其系数绝对值相等,再运用加减法消 元;(4)当相同的未知数的系数都不相等时,找出某一个未知数的最小公倍数,同时对两个方程进行变形, 转化为绝对值相同的系数,再用加减法来解。(选学)知识点六:三元一次方程组(一)定义:方程组含有三个相同的未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程 ,这样的方程组叫做三元一次方

8、程组。要点诠释:方程组包括三个方程,但是不一定每个方程都有三个未知数。如(二)解法: 解三元一次方程组的的关键仍然是消元,通过消元,把三元一次方程组转化为二元一次方程组,进 而转化为一元一次方程组求解。要点诠释: 解三元一次方程组时,要仔细观察方程组中三个一次方程系数的特点,确定先消哪个元,然后选择 用代入消元法还是加减消元法。二、规律方法指导1二元一次方程的整数解的求法: 一般情况下,一个二元一次方程都有无数个整数解,解这类问题时,先用一个未知数的代数式表示 另一个未知数,然后根据条件逐一求出相应的解.2判断二元一次方程组的方法: 把具有相同未知数的两个二元一次方程合在一起就组成一个二元一次

9、方程组,判断一个方程是不是 二元一次方程组,就看它是否满足以下两个条件:(1)看整个方程组里含有的未知数是不是两个;(2)看 含未知数的项的次数是不是1.3检验一对数是不是某个二元一次方程组的解,常用的方法是: 将这对数值分别代入方程组中的每个方程,只有当这对数值满足其中的所有方程时,才能说这对数 值是此方程组的解;否则,如果这对数值不满足其中的任何一个方程,那么它就不是此方程组的解.4运用代入法、加减法解二元一次方程组要注意的问题:(1)当方程组中含有一个未知数表示另一个未知数的代数式时,用代入法比较简单;(2)若方程组中一个未知数的系数为1(或1)时,选择这个方程进行变形,用代入法比较简便

10、3)当方程组中的两个方程有某个未知数的系数相同或相反时,进行加减消元比较方便;(4)若两个方程中,同一个未知数的系数成倍数关系,利用等式性质,可以转化成(3)的类型,选择加减 消元法比较简便;(5)若两个方程中,同一个未知数的系数的绝对值都不相等,那么,应选出一组系数(选最小公倍数较小 的一组系数),求出它们的最小公倍数,然后将原方程组变形,使新方程组的这组系数的绝对值相等 (都等于原系数的最小公倍数),再加减消元;(6)对于比较复杂的二元一次方程组,应先化简(去分母、去括号、合并同类项等). 通常要把每个方程 整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作加减消元的考虑.

11、二元一次方程组例题一、填空题1已知(k2)xk12y1,则k_时,它是二元一次方程;k_时,它是一元一次方程2若x2(3y2x)20,则的值是_ 3二元一次方程4xy10共有_ 组非负整数解4已知是二元一次方程mxny2的一个解,则2mn6的值等于_5用加减消元法解方程组时,把32,得_6已知二元一次方程组那么xy_ ,xy_7若2x5y0,且x0,则的值是_ 8.如果是方程组的解,则的关系是( )9.关于的方程组的解也是二元一次方程的解,则的值是 .10. 若已知方程,则当= 时,方程为一元一次方程; 当= 时,方程为二元一次方程.二、选择题1已知二元一次方程xy1,下列说法不正确的是( )

12、A)它有无数多组解(B)它有无数多组整数解 (C)它只有一组非负整数解(D)它没有正整数解2若二元一次方程组的解中,y0,则mn等于( )(A)34(B)34(C)14(D)1123已知x3t1,y2t1,用含x的式子表示y,其结果是( )(A)(B) (C) (D)4如图,将正方形ABCD的一角折叠,折痕为AE,BAD比BAE大48设BAE和BAD的度数分别为x,y,那么x,y所适合的方程组是( ) (A)(B) (C) (D)5. 已知代数式与是同类项,那么a、b的值分别是( ) A. B. C.6关于x,y的方程组的解为则a,b的值分别为( )(A)2和3(B)2和3(C)2和3(D)2和37与方程组有完全相同的解的是( )(A)x2y30 (B)2xy0 (C) (x2y3)(2xy)0 (D) x2y3(2xy)208若方程组的解为正整数,则m的值为( )(A)2 (B)4(C)6 (D)4三、解答题1.已知求b的值2如果关于x,y的方程组的解中,x与y互为相反数,求k的值3已知使3x5yk2和2x3yk成立的x,y的值的和等于2,求k的值4在方程(x2y8)k (4x3y7)0中,找出一对x,y值,使得k无论取何值,方程恒成立5已知方程组其中c0,求的值已知关于的方程组 分别求出k,b为何值时, 方程组的解为: 有唯一解; 有无数多个解; 无解?5 / 5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服