ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:510.50KB ,
资源ID:9774694      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9774694.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学第一轮复习函数与基本函数-详细知识点和经典题目含答案.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学第一轮复习函数与基本函数-详细知识点和经典题目含答案.doc

1、函数、基本初等函数 1.指数函数 (1)通过具体实例(如细胞的分裂,考古中所用的14C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景; (2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。 (3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点; (4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型 2.对数函数 (1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用; (2)通过具体

2、实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.知道指数函数与对数函数互为反函数(a>0,a≠1)。 4.幂函数 (1)了解幂函数的概念 (2)结合函数y=x, ,y=, y=,y=,y=的图象,了解它们的变化情况 二.【命题走向】 指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题

3、为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。 预测2010年对本节的考察是: 1.题型有两个选择题和一个解答题; 2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。同时它们与其它知识点交汇命题,则难度会加大 三.【要点精讲】 1.指数与对数运算 (1)根式的概念: ①定义:若一个数的次方等于,则这个数称的次方根。即若,则称的次方根, 1)当为奇数时,次方根记作; 2)当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作 ②性质:1);2)当为奇数时,; 3)当为偶数时,。 (2)

4、.幂的有关概念 ①规定:1)N*;2); n个 3)Q,4)、N* 且 ②性质:1)、Q); 2)、 Q); 3) Q)。 (注)上述性质对r、R均适用。 (3).对数的概念 ①定义:如果的b次幂等于N,就是,那么数称以为底N的对数,记作其中称对数的底,N称真数 1)以10为底的对数称常用对数,记作; 2)以无理数为底的对数称自然对数,,记作; ②基本性质: 1)真数N为正数(负数和零无对数);2); 3);4)对数恒等式:。 ③运算性质:如果则 1); 2); 3)R) ④换底公式: 1);2)。 2.指数函数

5、与对数函数 (1)指数函数: ①定义:函数称指数函数, 1)函数的定义域为R;2)函数的值域为; 3)当时函数为减函数,当时函数为增函数。 ②函数图像: 1)指数函数的图象都经过点(0,1),且图象都在第一、二象限; 2)指数函数都以轴为渐近线(当时,图象向左无限接近轴,当时,图象向右无限接近轴); ①, ②, ③ ①, ②, ③, 3)对于相同的,函数的图象关于轴对称 ③函数值的变化特征: (2)对数函数: ①定义:函数称对数函数, 1)函数的定义域为;2)函数的值域为R; 3)当时函数为减函数,当时函

6、数为增函数; 4)对数函数与指数函数互为反函数 ②函数图像: 1)对数函数的图象都经过点(0,1),且图象都在第一、四象限; 2)对数函数都以轴为渐近线(当时,图象向上无限接近轴;当时,图象向下无限接近轴); 4)对于相同的,函数的图象关于轴对称。 ①, ②, ③. ①, ②, ③. ③函数值的变化特征: (3)幂函数 1)掌握5个幂函数的图像特点 2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数 3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1) 当a

7、>0时过(0,0) 4)幂函数一定不经过第四象限 要点考向一:基本初等函数问题 考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。 2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。 考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。 2.熟记幂和对数的运算性质并能灵活运用。 例1:(2011四川文)4.函数的图象关于直线y=x对称的图象像大致是

8、 (天津文)5.已知则 A.    B. C.  D. 例2:(2010·天津高考文科·T6)设( ) (A)a

9、数、函数值、解析式的确定与应用。 2.常结合方程、不等式及函数的有关性质交汇命题,属低、中档题。 考向链接:1.求函数定义域的类型和相应方法。 2.求f(g(x))类型的函数值时,应遵循先内后外的原则,面对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性。 3.求函数的解析式,常见命题规律是:先给出一定的条件确定函数的解析式,再研究函数的有关性质;解答的常用方法有待定系数法、定义法、换元法、解方程组法、消元法等。 4.映射个数的计算一般要分类计数。 例3:(2011福建文)8.已知函数f(x)=。若f(a)+f(1)=0,则实数

10、a的值等于 A.-3 B.-1 C.1 D.3 (2011山东文)3.若点(a,9)在函数的图象上,则tan=的值为 (A)0 (B) (C) 1 (D) (2011陕西文)6.方程在内 ( ) (A)没有根 (B)有且仅有一个根 (C) 有且仅有两个根 (D)有无穷多个根 (湖南文)8.已知函数若有则的取值范围为 A. B. C. D. (2011安徽文)(11)设是定义在R上的奇函数,当x≤0时,=,则 .. 要点考向三:函数图象问

11、题 考情聚焦:1.函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已成为各省市高考命题的一个热点。 2.常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。 考向链接:1.基本初等函数的图象和性质,函数图象的画法以及图象的三种变换。 2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究。 3.在研究一些陌生的方程和不等式时常用数形结合法求解。 例4:(2011陕西文)4. 函数的图像是 ( ) (2010·山东高考·T11)函数的图象大致是( ) 【命题

12、立意】本题考查函数的图象,函数的基础知识以及数形结合的思维能力, 考查了考生的分析问题解决问题的能力和运算求解能力。 要点考向四:函数性质问题 考情聚焦:该考向是各省市高考命题大做文章的一个重点。常与多个知识点交汇命题,且常考常新,既有小题,也有大题,主要从以下三个方面考查: 1.单调性(区间)问题,热点有:(1)确定函数单调性(区间);(2)应用函数单调性求函数值域(最值)、比较大小、求参数的取值范围、解(或证明)不等式。 2.奇偶性、周期性、对称性的确定与应用。 3.最值(值域)问题,考题常与函数的其他性质、图象、导数、基本不等式等综合。 (2011四川文)16.函数的定义域

13、为A,若且时总有,则称为单函数.例如,函数=2x+1()是单函数.下列命题: ①函数(xR)是单函数; ②指数函数(xR)是单函数; ③若为单函数,且,则; ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是_________.(写出所有真命题的编号) 答案:②③④ 解析:对于①,若,则,不满足;②是单函数;命题③实际上是单函数命题的逆否命题,故为真命题;根据定义,命题④满足条件. 1.已知loga2=m,loga3=n,则a2m+n的值为(  ) A.6         B.18 C.12 D.7 2.(2011·重庆文)设a=log,b=log,c

14、=log3,则a、b、c的大小关系是(  ) A.a3或a<-1 D.-1

15、  ) A.-5 B.- C. D.5 6.(2012·温州调研)已知函数f1(x)=ax,f2(x)=xa,f3(x)=logax(其中a>0,且a≠1)在同一坐标系中画出其中两个函数在第一象限的图像,其中正确的是(  ) 7.(2012·镇江调研)函数f(x)=log2(2x+1)的单调增区间是________. 8.(2012·合肥模拟)设奇函数f(x)的定义域为R,且周期为5,若f(1)<-1,f(4)=loga2(a>0,且a≠1),则实数a的取值范围是________. 9.(2012·温州十校模拟)函数f(x)=|log3x|在区间[a,b]上的值域为[0,1]则b-a的最小值为________. 10.(2011·江苏)已知实数a≠0,函数f(x)=,若f(1-a)=f(1+a),则a的值为________. 参考答案 课堂练习ABDAD CB, -3, BA ②③④ 课前练习 CBBAB B (-,+∞) (1,2) -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服