ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:238.26KB ,
资源ID:9666208      下载积分:8 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9666208.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2023年高中数学知识点椭圆双曲线抛物线.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023年高中数学知识点椭圆双曲线抛物线.docx

1、高中数学专题四 椭圆、双曲线、抛物线 《圆锥曲线》知识点小结 一、椭圆:(1)椭圆的定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹。 其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。 注意:表达椭圆;表达线段;没有轨迹; (2)椭圆的标准方程、图象及几何性质: 中心在原点,焦点在轴上 中心在原点,焦点在轴上 标准方程 图 形 x O F1 F2 P y A2 A1 B1 B2 A1 x O F1 F2 P y A2 B2 B1 顶 点 对称轴 轴,轴;短轴为,长轴为 焦 点

2、 焦 距 离心率 (离心率越大,椭圆越扁) 通 径 (过焦点且垂直于对称轴的直线夹在椭圆内的线段) 3.常用结论:(1)椭圆的两个焦点为,过的直线交椭圆于两点,则的周长= (2)设椭圆左、右两个焦点为,过且垂直于对称轴的直线交椭圆于两点,则的坐标分别是 二、双曲线: (1)双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于)的点的轨迹。 其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。 注意:与()表达双曲线的一支。 表达两条射线;没有轨迹; (2

3、双曲线的标准方程、图象及几何性质: 中心在原点,焦点在轴上 中心在原点,焦点在轴上 标准方程 图 形 x O F1 F2 P y A2 A1 y x O F1 P B2 B1 F2 顶 点 对称轴 轴,轴;虚轴为,实轴为 焦 点 焦 距 离心率 (离心率越大,开口越大) 渐近线 通 径 (3)双曲线的渐近线: ①求双曲线的渐近线,可令其右边的1为0,即得,因式分解得到。 ②与双曲线共渐近线的双曲线系方程是; (4)等轴双曲线为,其离心率为 (4)

4、常用结论:(1)双曲线的两个焦点为,过的直线交双曲线的同一支于两点,则的周长= (2)设双曲线左、右两个焦点为,过且垂直于对称轴的直线交双曲线于两点,则的坐标分别是 三、抛物线: (1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。 其中:定点为抛物线的焦点,定直线叫做准线。 (2)抛物线的标准方程、图象及几何性质: 焦点在轴上, 焦点在轴上, 焦点在轴上, 焦点在轴上, 开口向右 开口向左 开口向上 开口向下 标准方程

5、 图 形 x O F P y O F P y x O F P y x O F P y x 顶 点 对称轴 轴 轴 焦 点 离心率 准 线 通 径 焦半径 焦点弦 焦准距 四、弦长公式: 其中,分别是联立直线方程和圆锥曲线方程,消去 y后所得关于x的一元二次方程的判别式和的系数 五、弦的中点坐标的求法 法(一):(1)求出或设出直线与圆锥曲线方程;(2)联立两方

6、程,消去y,得关于x的一元二次方程设,,由韦达定理求出;(3)设中点,由中点坐标公式得;再把代入直线方程求出。 法(二):用点差法,设,,中点,由点在曲线上,线段的中点坐标公式,过A、B两点斜率公式,列出5个方程,通过相减,代入等变形,求出。 六、求离心率的常用方法:法一,分别求出a,c,再代入公式 法二、建立a,b,c满足的关系,消去b,再化为关于e的方程,最后解方程求e (求e时,要注意椭圆离心率取值范围是0﹤e﹤1,而双曲线离心率取值范围是e﹥1) 高考专题训练 椭圆、双曲线、抛物线 一、选择题: 1.(2023·辽宁)已知F是抛物线y2=x的焦点,A,B是抛物线上

7、的两点,|AF|+|BF|=3,则线段AB的中点M到y轴的距离为(  ) A.    B.1    C.    D. 答案:C 2.(2023·湖北)将两个顶点在抛物线y2=2px(p>0)上,另一个顶点是此抛物线焦点的正三角形个数记为n,则(  ) A.n=0 B.n=1 C.n=2 D.n≥3 答案:C 3.(2023·全国Ⅱ)已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos∠AFB=(  ) A. B. C.- D.- 答案:D 4.(2023·浙江)已知椭圆C1:+=1(a>b>0)与双曲线C2:x2-

8、=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  ) A.a2= B.a2=13 C.b2= D.b2=2 答案:C 5.(2023·福建)设圆锥曲线的两个焦点分别为F1,F2,若曲线上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线的离心率等于(  ) A.或 B.或2 C.或2 D.或 答案:A 6.(2023·邹城一中5月模拟)设F1,F2是双曲线-=1(a>0,b>0)的左、右两个焦点,若双曲线右支上存在一点P,使(+)·=0(O为坐标原点),且|PF1|=|PF2

9、则双曲线的离心率为(  ) A. B.+1 C. D.+1 答案:D 二、填空题: 7.(2023·江西)若椭圆+=1的焦点在x轴上,过点作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好通过椭圆的右焦点和上顶点,则椭圆方程是________. 答案:+=1 8.(2023·课标)在平面直角坐标系xOy中,椭圆C的中心在原点,焦点F1,F2在x轴上,离心率为,过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________. 答案:+=1 9.(2023·浙江)设F1,F2分别为椭圆+y2=1的左、右焦点,点A,B在椭圆上,若=

10、5,则点A的坐标是____________. 答案:(0,±1) 10.(2023·全国)已知F1、F2分别为双曲线C:-=1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的角平分线,则|AF2|=________. 答案:6 三、解答题: 11.(12分)(2023·江西)P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M、N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为. (1)求双曲线的离心率; (2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.

11、 解:(1) e==. (2)λ=0或λ=-4. 12.(13分)(2023·辽宁)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e.直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D. (1)设e=,求|BC|与|AD|的比值; (2)当e变化时,是否存在直线l,使得BO∥AN,并说明理由. 解:(1) |BC|:|AD|=. (2)t=0时的l不符合题意,t≠0时,BO∥AN当且仅当BO的斜率kBO与AN的斜率kAN相等时成立

12、 基础巩固题目 椭圆、双曲线、抛物线 (2) 双曲线的实轴长是 (A)2 (B) (C) 4 (D) 4 【解析】选C. (5) 在极坐标系中,点 到圆 的圆心的距离为[来源:学#科#网] (A)2 (B) (C) (D) 【解析】选D. (21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 解:点P的轨迹方程为

13、 (3) 双曲线的实轴长是 (A)2 (B) (C) 4 (D) 4 【解析】选C. (4) 若直线过圆的圆心,则a的值为 (A)1 (B) 1 (C) 3 (D) 3 【解析】. (17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 证明:(I)反证法 3.在极坐标系中,圆的圆心的极坐标是 A. B. C. D. 【解

14、析】: ,选B。 19.已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表达为m的函数,并求的最大值。 解:(Ⅰ) (Ⅱ)当时,|AB|=2,所以|AB|的最大值为2. 8.已知点A(0,2),B(2,0).若点C在函数y = x的图像上,则使得ΔABC的面积为2的点C的个数为 A A.4 B.3 C.2 D.1 19.(本小题共14分) 已知椭圆

15、的离心率为,右焦点为(,0),斜率为I的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2). (I)求椭圆G的方程;(II)求的面积. 解:(Ⅰ)椭圆G的方程为 (Ⅱ)△PAB的面积S= 7.设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足=4:3:2,则曲线r的离心率等于 A A. B.或2 C.2 D. 17.(本小题满分13分) 已知直线l:y=x+m,m∈R。 (I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上

16、求该圆的方程; (II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。 (I)圆的方程为 (II)当m=1时,直线与抛物线C相切;当时,直线与抛物线C不相切。 21.(2)(本小题满分7分)坐标系与参数方程 在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 . (I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系; (II)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值. 解:(I)

17、点P在直线上 (II)最小值为 11.设圆锥曲线的两个焦点分别为F1、F2,若曲线上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线的离心率等于 A A. 或 B.或2 C.或2 D.或 18.(本小题满分12分) 如图,直线l:y=x+b与抛物线C:x2=4y相切于点A。 (Ⅰ)求实数b的值; (Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程。 解:(I)b=-1 (II)圆A的方程为 14.(坐标系与参数方程选做题)已知两曲线参数方程分别为 和,它们的交点坐标为 .[来源:Zxxk.Com] 19. (本小题满分14分) 设圆C与两圆中的一个内切,另一个外切. (1)求C的圆心轨迹L的方程. (2)已知点且P为L上动点,求的最大值及 此时点P的坐标. (1) 解: L的方程为 (2)解:最大值2。 (2)设是定点,其中满足.过作的两条切线,切点分别为,与分别交于.线段上异于两端点的点集记为.证明:; 解: (3); .

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服