ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:235.99KB ,
资源ID:9568893      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9568893.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2023届高考数学特训营-第3节--第二课时-简单的三角恒等变换.doc)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2023届高考数学特训营-第3节--第二课时-简单的三角恒等变换.doc

1、 第二课时 简单的三角恒等变换 A级(基础应用练) 1.(2022•云南省红河州模拟)已知cos(α-)=,则cos(2α+)=(  ) A. B.- C. D.- 答案:A 解析:令θ=α-,则α=θ+,cos θ=, 所以cos(2α+)=cos[2(θ+)+]=cos(2θ+π)=-cos 2θ=-(2cos2θ-1)=. 2.计算:等于(  ) A. B. C. D.- 答案:A 解析:===. 3.(2022•陕西省西安市模拟)设α是第一象限角,满足sin(α-)-cos(α+)=,则tan α=(  ) A.1 B.2 C.

2、D. 答案:C 解析:sin(α-)-cos(α+)=sin α-cos α-cos α+sin α=(sin α-cos α)=, ∴sin α-cos α=,联立, ∵α是第一象限角, ∴sin α>0,cos α>0,即sin α=,cos α=, ∴tan α===. 4.(2022•山西太原模拟)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m=2sin 18°,若m2+n=4,则等于(  ) A.8 B.4 C.2 D.1 答案:C 解析:因为m=2sin 18°,m2+n=4,所以

3、n=4-m2=4-4sin218°=4cos218°. 所以=====2. 5.(2022•江西吉安模拟)若sin 2α=,sin(β-α)=,且α∈[,π],β∈[π,],则α+β的值是(  ) A. B. C.或 D.或 答案:A 解析:∵α∈[,π],∴2α∈[,2π], ∵sin 2α=>0,∴2α∈[,π], ∴α∈[,],且cos 2α=-. 又∵sin(β-α)=,β∈[π,], ∴β-α∈[,],cos(β-α)=-, ∴cos(α+β)=cos[(β-α)+2α]=cos(β-α)cos 2α-sin(β-α)sin 2α=(-)×(-)-×=,

4、又∵α+β∈[,2π],∴α+β=. 6.(2022•淄博模拟)已知tan(+θ)=3,则sin 2θ-2cos2θ=________. 答案:- 解析:∵tan(θ+)=3, ∴tan θ=tan[(θ+)-]===, ∴sin 2θ-2cos2θ====-. 7.(2022•北京模拟)=________. 答案:-4 解析:原式= = = = = =-4 . 8.(2022•山东烟台模拟)在平面直角坐标系xOy中,角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边交单位圆O于点P(a,b),且a+b=,则cos(2α+)的值是________. 答案:-

5、解析:由任意角的三角函数的定义得sin α=b,cos α=a. 又a+b=,∴sin α+cos α=, 两边平方可得sin2α+cos2α+2sin αcos α=, 即1+sin 2α=,∴sin 2α=. ∴cos(2α+)=-sin 2α=-. B级(综合创新练) 9.(多选题)(2022•江西南昌模拟)已知函数f (x)=sin(-2x)-2sin(x-)cos(x+),则下列关于函数f (x)的描述正确的是(  ) A.f (x)在区间[0,]上单调递增 B.f (x)图象的一个对称中心是(,0) C.f (x)图象的一条对称轴是x=- D.将f (x)的图象

6、向右平移个单位长度后,所得函数图象关于y轴对称 答案:AC 解析:f (x)=sin(-2x)-2sin(x-)cos(x+) =cos 2x+sin 2x+sin2x-cos2x =cos 2x+sin 2x-cos 2x=sin(2x-), 由2kπ-≤2x-≤2kπ+(k∈Z), 得kπ-≤x≤kπ+(k∈Z), 当k=0时,[0,]⊆[-,],故A正确; f ()=sin =1≠0,故B不正确; f (-)=-sin =-1,故C正确; 将f (x)的图象向右平移个单位长度得到函数y=sin(2x-)的图象,显然不关于y轴对称,故D不正确. 10.(多选题)(20

7、22•江苏省南京市模拟)已知函数f (x)=sin 2x+2sin4+2cos4-,则下列说法正确的是(  ) A.函数f (x)的最小正周期为2π B.x=-是函数f (x)图象的一条对称轴 C.(-,0)为函数f (x)图象的一个对称中心 D.函数f (x)在区间[-,]上的最大值为1 答案:CD 解析:f (x)=sin 2x+2sin4+2cos4-=sin 2x+2•[()2+()2]-=sin 2x+cos2x-=sin 2x+-=sin 2x+cos 2x=sin(2x+), 对于A选项,函数f (x)的最小正周期为T==π,A选项错误; 对于B,C选项,f (-

8、)=sin 0=0,故B错误,C正确; 对于D选项,因为x∈[-,],所以2x+∈[-,], 所以sin(2x+)∈[-,1],故函数f (x)在区间[-,]上的最大值为1,故D正确. 故选CD. 11.(2022•天津市模拟)已知sin(θ-)cos(θ-)=,则sin 4θ=________. 答案: 解析:法一:由sin(θ-)cos(θ-)=得sin(2θ-)=,故sin(-2θ)=-, 则sin 4θ=cos(-4θ)=1-2sin2(-2θ)=1-2×(-)2=. 法二:由sin(θ-)cos(θ-)=得sin(2θ-)=,则(sin 2θ-cos 2θ)=, 所

9、以sin 2θ-cos 2θ=,两边平方得1-2cos 2θsin 2θ=,即1-sin 4θ=,所以sin 4θ=. 12.(2022•苏州模拟)如图,图中实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且三个圆半径相等,设第i段弧所对的圆心角为αi(i=1,2,3),则cos cos -sin sin =________. 答案:- 解析:设三段圆弧交于A,B,D三点,连接PA,PB,PD, 则∠APB+∠APD+∠BPD=2π, 从而α1+α2+α3=4π, 所以cos cos -sin sin =cos =cos =-. 13.

10、2022•安徽省合肥质检)已知函数f (x)=cos 2x+sin(2x-). (1)求函数f (x)的最小正周期; (2)若α∈(0,),f (α)=,求cos 2α. 解:(1)∵f (x)=cos 2x+sin 2x-cos 2x=sin 2x+cos 2x=sin(2x+), ∴函数f (x)的最小正周期T==π. (2)由f (α)=,可得sin(2α+)=, ∵α∈(0,),∴2α+∈(,). 又∵0

11、n =. 14.(2022•山东省日照市模拟)已知函数f (x)=(a+2cos2)•cos(x+θ)为奇函数,且f ()=0,其中a∈R,θ∈(0,π). (1)求a,θ的值; (2)若α∈(,π),f (+)+cos(α+)cos 2α=0,求cos α-sin α的值. 解:(1)因为f (x)=(a+2cos2)cos(x+θ)是奇函数, 所以(a+2cos2)cos(x+θ)=-(a+2cos2)cos(-x+θ), 化简、整理得cos xcos θ=0,则有cos θ=0, 由θ∈(0,π),得θ=, 所以f (x)=-sin x•(a+2cos2). 由f ()

12、=0,得-(a+1)=0,即a=-1. (2)由(1)知f (x)=-sin 2x,f (+)+cos(α+)cos 2α=0⇒sin(α+)=cos(α+)cos 2α. 因为cos 2α=sin(2α+)=sin[2(α+)]=2sin(α+)cos(α+), 所以sin(α+)=cos2(α+)sin(α+). 又α∈(,π),所以sin(α+)=0或cos2(α+)=.由sin(α+)=0⇒α=, 所以cos α-sin α=cos -sin =-.由cos2(α+)=,<α+<, 得cos(α+)=-⇒(cos α-sin α)=-⇒cos α-sin α=-. 综上所述,cos α-sin α=-或cos α-sin α=-.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服