ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:210.04KB ,
资源ID:9527263      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9527263.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(土木工程数学第三次作业.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

土木工程数学第三次作业.doc

1、工程数学作业3 第1章 事件与概率 第2章 变量及其数字特征 一、 单项选择题 1 A, B 为两个事件, 则( B )成立。 A (A+B)-B = A B (A+B)-BA C (A-B)+B = A  D (A-B)+BA 2 假如( C )成立, 则事件A与B 互为对立事件。 A AB= ø B AB = U C AB= ø且A+B=U D A 与互为对立事件 3袋中有3个白球7个黑球, 每次取一个, 不放回, 第二次取到白球概率是( A )。 A 3/10 B 2/9 C

2、3/9 D 2/10 4对于事件A, B, 命题( C )是正确。 A 假如A, B互不相容, 则互不相容 B 假如AB , 则 B C假如A, B相互独立, 则相互独立 D假如A, B相容, 则相容 5 某独立试验每次试验成功率为p, 则在3次反复试验中最少失败1次概率为( B )。 A B C D 6 设变量X~B(n, p), 且E(X)=4.8, D(X)=0.96, 则参数n 与p分别是( A )。 A 6, 0.8 B 8, 0.6 C 12, 0.4 D14, 0.2 7设为连续型变量X密度函数, 则对任意,

3、 E(X)=( A )。 A B C D 8 在下列函数中能够作为分布密度函数是( B )。 A B C D 9设连续型变量X密度函数为,分布函数为, 则对任意区间(), = ( D ) 。 A B C D 10设X为变量, E(X)=μ, D(X)=σ2, 当( C )时, 有E(Y)=0, D(Y)=1。 。 A B C D 二、 填空题 1从数字1, 2, 3, 4, 5中任取3个, 组成没有反复数字三位

4、数, 则这个三位数是偶数概率为 2/5 。 2已知P(A)=0.3, P(B)=0.5, 则当事件A, B 互不相容时, P(A+B)= 0.8 , 0.3 。 3 A, B 为两个事件, 且BA, 则 P(A+B)= P(A) 。 4已知P(AB)=P(), P(A)=p, 则P(B)= 1-p 。 5若事件A, B 相互独立, 且P(A)=p, P(B)=q, 则P(A+B)= p+q-pq 。 6已知P(A)=0.3, P(B)=0.5, 则当事件A, B 相互独立时, P(A+B)= 0.65

5、 , P(A|B)= 0.3 。 7设变量X~U(0, 1), 则 分布函数 F(x)= 8若X~B(20, 0.3), 则E(X)= 6 。 9若X~N(μ, σ2), 则 P(|X-μ|≤3σ)= 2Φ(3)-1= 0.9974 。 10 E[(X-E(X))(Y-E(Y))] 称为二维变量(X, Y) 协方差 。 三、 解答题 1 设A, B, C 为三个事件, 试用A, B, C 运算分别表示下列事件: (1)A, B, C 中最少有一个发生; A+B+C (2)A,

6、 B, C 中只有一个发生; (3)A, B, C 中至多有一个发生; (4)A, B, C 中最少有两个发生; (5)A, B, C 中不多于两个发生; (6)A, B, C 中只有C发生。 2袋中有3个红球, 2个白球, 现从中抽取2个球, 求下列事件概率: (1)2球恰好同色; (2)2球中最少有1个红球。 解: (1)2球恰好同色概率P(A)= (2)2球中最少有1个红球概率P(B)= 3加工某种零件需要两道工序, 第一道工序次品率是2%, 假如第一道工序出次品则此零件为次品; 假如第一道工序出正品, 则由第二道工序加工, 第二道工序次品率是3%, 求加工

7、出来零件是正品概率。 解: 加工出来零件是正品概率是P(A)==0.98×0.97=0.9506 4 市场供给热水瓶中, 甲厂产品占50%, 乙厂产品占30%, 丙厂产品占20%, 甲乙丙厂产品合格率分别为90%, 85%, 80%, 求买到一个热水瓶是合格品概率。 解: 设事件{i厂生产产品}, 事件B={产品是合格品} 则, 热水瓶是合格品概率P(B)= = =0.5×0.9+0.3×0.85+0.2×0.8=0.865 5某射手每发命中概率是0.9, 连续射击4次, 求: (1)恰好命中3次概率; (2)最少命中1

8、次概率。 解: n次射击中恰好命中k次概率: P(X=k)= (1)恰好命中3次概率 P(X=3)==4×0.729×0.1=0.2916 (2)最少命中1次概率P(X≥1)=1-P(X=0)=1-=0.9999 6 设变量X概率分布为 0 1 2 3 4 5 0.1 0.15 0.2 0.3 0.15 0.1 试求P(X≤4), P(2≤X≤5), P(X≠3)。 解: P(X≤4)=0.1+0.15+0.2+0.3 + 0.15=0.9 P(2≤X≤5)=0.2+0.3 + 0.15 +0.1=0.75

9、 P(X≠3)= 1-0.3=0.7 7设变量X含有概率密度, 试求: P(X≤1/2), P(1/40) 解: ~N(0, 1) P(0.20)==P(Y>-1.5)=Φ(1.5)=0.9332 10设是独立同分布变量, 已知E()=μ, D()=σ2, 设 , 求E(), D()。 解: E()= E()===μ D()= D()===

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服