ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:70.58KB ,
资源ID:9442534      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9442534.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(猜想证明与拓广.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

猜想证明与拓广.doc

1、课题学习——猜想、证明与拓广 设计思路 《猜想、证明与拓广》是义务教育课程标准实验教科书《数学》“课题学习”的内容,课堂围绕着中心课题——图形“倍增”,通过一系列具体问题逐渐展开,其主要意图是引导学生通过自主探索活动,综合运用已学的知识,体验处理问题的策略和方法,从而使自身解决问题的能力得到提升。 教学目标:1、通过创设问题情境,让学生经历猜想、证明、拓广的过程,增强问题意识和自主探索意识,获得探索和发现的体验。 2、在探究过程中,感受由特殊到一般、数形结合的思想方法,体会知识之间的内在联系,理解证明的必要性。 3、在合作交流中扩展思路,发

2、展学生的推理能力。 教学重点:经历猜想、证明、拓广的“数学化”的过程 教学难点:在问题解决过程中综合运用所学知识 一.世界三大几何难题 平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺.用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来.有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题. 1.化圆为方 2.三等分任意角 对于某些角如900、1800三等分并不难,但是否所有角都可以三等分呢?例如600,若能三等分则可以做出200的角,那么正18边形及正九边形也都可以做出来了(注:圆内

3、接一正十八边形每一边所对的圆周角为3600/18=200). 其实三等分角的问题是由求作正多边形这一类问题所引起来的. 3.倍立方 倍立方——求作一立方体使其体积是一已知立方体的二倍 这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的. 1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多

4、次式的根),化圆为方的不可能性也得以确立 . 二.猜想,证明与拓广 1.任意给定一个正方形,是否存在另一个正方形,它的周长和面积分别是已知正方形周长和面积的2倍? l 你准备怎么去做? l 你是怎么做的? l 你有哪些解决方法? l 你提出新的问题吗? 解:设给定的正方形边长为a,则其面积是a2. 若周长倍增,即边长变为2a,则面积应为4a2; 若面积倍增,即面积变为2a2,则其边长应为 a. 无论从哪个角度考虑,都说明不存在这样的正方形. 2. 任意给定一个矩形,是否存在另一个矩形,它的周长和面积是已知矩形周长和面积的2倍? 解:如果

5、矩形的长和宽分别为2和1,那么其周长和面积分别为6和2. 所求矩形的周长和面积应分别为12和4. l 接下来该怎么做?你有何想法? l 有两种思路可供选择: l 先从周长是12出发,看面积是否是4; l 或先从面积是4出发,看周长是否是12. (1)从周长是12出发,看面积是否是4; 如果设所求矩形的长为x,那么它宽为6-x,其面积为 x(6-x).根据题意,得 x(6-x)=4. 即 x2-6x+4=0. 如果这个方程有解,则说明这样的矩形存在. 解这个方程得: 结论:如果矩形的长和宽分

6、别为2和1,那么存在另一个矩形,它的周长和面积是已知矩形周长和面积的2倍. (2)从面积是4出发,看周长是否是12. 解:如果设所求矩形的长为x,那么宽为4/x,其周长为2(x+4/x).根据题意,得 x+4/x=6. 即 x2-6x+4=0. 显然这个方程有解,由此说明这样的矩形存在. 解这个方程得: 结论:如果矩形的长和宽分别为2和1,那么存在另一个矩形,它的周长和面积是已知矩形周长和面积的2倍. l 如果已知矩形的长和宽分别为3和1,是否还有相同的结论? l 如果已知矩形的长和宽分别为4和1,5和1,

7、……,n和1呢? l 更一般地,当已知矩形的长和宽分别为m和n时,是否仍然有相同的结论? 分析:如果矩形的长和宽分别为m和n,那么其周长和面积分别为2(m+n)和mn,所求矩形的周长和面积应分别为4(m+n)和2mn. 从周长是4(m+n)出发,看面积是否是2mn; 解:如果设所求矩形的长为x,那么它宽为2(m+n)-x,其面积为 x[2(m+n)-x].根据题意,得 x[2(m+n)-x]=2mn. 即 x2-2(m+n)x+2mn=0. 结论:任意给定一个矩形,必然存在另一个矩形,它的

8、周长和面积是已知矩形周长和面积的2倍. 在探索结论:“任意给定一个矩形,必然存在另一个矩形,它的周长和面积是已知矩形周长和面积的2倍.”的过程中,我们经历了猜想,由特殊到一般的尝试,证明,拓广的全过程,从而得到了一般性的结论. 3.任意给定一个矩形,是否一定存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半? 认为,这个结论是正确的,理由是:既然任意给定一个矩形,必然存在另一个矩形,它的周长和面积是已知矩形周长和面积的2倍.也就是任何一个矩形 的周长和面积可以同时“加倍”,那么,原矩形自然满足新矩形的“减半”要求,即原矩形的周长和面积分别是新矩形周长和面积的一半. l 如果矩

9、形的长和宽分别仍为2和1,那么是否存在一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半? l 如果已知矩形的长和宽分别为3和1,是否还有相同的结论? l 如果已知矩形的长和宽分别为4和1,5和1,……,n和1呢? 解:如果矩形的长和宽分别为2和1,那么其周长和面积分别为6和2,所求矩形的周长和面积应分别为3和1.设所求矩形的长为x,那么它宽为1.5-x,其面积为x(1.5-x).根据题意,得 x(1.5-x)=1. 如果这个方程有解,则说明这样的矩形存在. 由b2-4ac=32-4×2×2=-7<0,知道这个方程没有实数根. 结论:

10、如果矩形的长和宽分别为2和1,那么不存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半. 解:当如果矩形的长和宽分别为3和1,4和1,5和1时.设所求矩形的长为x, 根据题意所得的方程均有没有实数根解,则说明这样的矩形不存在. 结论:如果矩形的长和宽分别为2和1,3和1,4和1,5和1时.都不存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半. 我们已经知道:如果矩形的长和宽分别为2和1,3和1,4和1,5和1时.都不存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半.这个结论是否具有一般性? 4.如果这个结论不具有一般性,那么当矩形的长和宽满足什么条

11、件时,才存在一个新的矩形,它的周长和面积分别是已知矩形的周长和面积的一半?你能再找出这样的一个例子吗? 解:如果矩形的长和宽分别为6和1,那么其周长和面积分别为14和6,所求矩形的周长和面积应分别为7和3.设所求矩形的长为x,那么它宽为3.5-x,其面积为x(3.5-x).根据题意,得 x(3.5-x)=3. 即 2x2-7x+6=0. 由b2-4ac=72-4×2×6=1>0,知道这个方程有实数根: 结论:如果矩形的长和宽分别为6和1时.存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半. 解:如果矩形的

12、长和宽分别为m和n,那么其周长和面积分别为2(m+n)和mn,所求矩形的周长和面积应分别为m+n和mn/2.设所求矩形的长为x,那么它宽为(m+n)/2-x,其面积为x[(m+n)/2-x].根据题意,得 x[(m+n)/2-x]=mn/2. 即 2x2-(m+n)x+mn=0. 由Δ=b2-4ac=(m+n)2-4×2×mn=m2+n2-6mn. 知道只有当m2+n2≥6mn时,这个方程才有实数根: 结论:如果矩形的长和宽满足m2+n2≥6mn时.才存在另一个矩形,它的周长和面积分别是已知矩形周长和面积的一半.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服