1、整式的乘除与因式分解检测题
一、选择题(每题3分,共30分)
1、下列运算正确的是( )
A. B. C. D.
2、化简(-x)3·(-x)2的结果正确的是( )
A.-x6 B.x6 C.x5 D.-x5
3、的计算结果是( )
A. B. C. D.
4、下面是某同学在一次测验中的计算摘录①;② ③ ;④,其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
5、下列各式计算结果正确的是( )
A. B.
C.
2、 D.
6、(x-y)(y-x)等于( )
A. B. C. D.
7、等于( )
A. B. C. D.
8、下列分解因式正确的是( )
A. B.
C. D.
9、一个正方形的边长增加2厘米,它的面积就增加24平方厘米,这个正方形原来的边长是( )
A.5厘米 B.6厘米 C.8厘米 D.10厘米
10、若x2+2(m-3)x+16是完全平方式,则m的值等于( )
A.3 B.-5 C.7 D.7
3、或-1
二、填空(每小题6分,共30分)
11、同底数幂的乘法
根据乘方的意义,我们知道:
(1) (2) (3)
因此,对于任意底数a与任意正整数m、n,我们有(m、n都是正整数)
即同底数的幂相乘,底数不变,指数相加。
(1)计算下列各题:
(2)已知,,则
12、整式的乘法
如何计算等于多少呢?
是两个单项式与相乘,我们可以利用乘法交换律、结合律及同底数幂的运算性质来计算:==,由此我们可以得到单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式乘
4、多项式,就是用单项式去乘多项式的每一项,再把所得的积相加。
如:
根据上面的方法计算下列各题:
(1);(2)=_____;
13、乘法公式
根据整式的乘法,我们有:
①(a+b)(a-b)=,即两个数的和与这两个数的差的积,等于这两个数的平方差。这个公式叫做平方差公式。例如:。
②;,即两数和(或差)的平方,等于它们的平方和,加(或减)它们积的两倍。这两个公式叫做完全平方公式。
例如:
根据上面的乘法公式计算下列各题:
(1)(2a+3)(-2a+3)=___________;(2)=_________; (3) ;
14、因式分解
我们把一个多项式化成几个整式的
5、积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。如:(),都是把一个多项式因式分解。
因式分解的方法有:
(1)提公因式法,如:
(2)公式法:① ②
③
根据上面提供的方法,把下列各多项式因式分解:
(1)= ________ ; (2) -25= _;(3) 。
15、探究:
由多项式的乘法法则知:若,则,;反过来要将多项式进行分解,关键是找到两个数、,使,,如对多项式,有此时所以可分解为即.
根据上面的方法把下列各式因式分解:
(1)=___________________;(2)=_________________;
三、解答题(共40分)
16、计算:(共10分)
(1) (2)
17、把下列各式分解因式.(共10分)
(1) (2) x4-1
18、已知,,求的值 (6分)
19、先化简,再求值(7分)
(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-1
20、已知x-y=1,xy=3,求的值. (7分)