ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:313.50KB ,
资源ID:9378915      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9378915.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(勾股定理的逆定理教案.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

勾股定理的逆定理教案.doc

1、18.2勾股定理的逆定理(第一课时) 一、教学目标 知识目标: 1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 2、探究勾股定理的逆定理的证明方法。 3、理解原命题、逆命题、逆定理的概念及关系。 能力目标:(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展和形成的过程; (2)通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用。 情感目标:(1)通过用三角形的三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系; (2)通过对勾股定理的逆定理的探索,培养了学生的交流、合作的意识和严谨的学习态度。

2、同时感悟勾股定理和逆定理的应用价值。 二、教学重点难点 重点:证明勾股定理的逆定理;用勾股定理的逆定理解决具体的问题。 难点:理解勾股定理的逆定理的推导。 三、教学准备 圆规、三角板、一根打了13个等距离结的细绳子、钉子、小黑板 四、教学过程 (1)复习旧课 1、在直角三角形中,两直角边长分别是3和4,则斜边长是 。 2.一个直角三角形,量得其中两边的长分别为5㎝、3㎝则第三边的长是_________。 3.要登上8 高的建筑物,为了安全需要,需使梯子底端离建筑物6问至少需要多长的梯子? (2)情境导入 1、在古代,没有直尺、圆规等作图工具,人们是怎样画

3、直角三角形的呢? 【实验观察】 用一根打了13个等距离结的细绳子,在小黑板上,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用三角板量出最大角的度数.可以发现这个三角形是直角三角形。(这是古埃及人画直角的方法) 2、 用圆规、刻度尺作△ABC,使AB=5㎝,AC=4㎝,BC=3㎝,量一量∠C。 再画一个三角形,使它的三边长分别是5㎝、12㎝、13㎝,这个三角形有什么特征? 3、为什么用上面的三条线段围成的三角形,就一定是直角三角形呢?它们的三边有怎样的关系?(学生分组讨论,教师适当指导) 学生猜想:如果一个三角形的三边长满足下面

4、的关系,那么这个三角形是直角三角形。 4、指出这个命题的题设和结论,对比勾股定理,理解互逆命题。 (3)探究新知 1、探究:在下图中,△ABC的三边长,,满足。如果△ABC是直角三角形,它应该与直角边是,的直角三角形全等。实际情况是这样吗?我们画一个直角三角形A‘B’C‘, 使∠C’=90°,A‘C’=,B‘C’=。把画好的△A‘B’C‘ 剪下,放到△ABC上,它们重合吗?(学生分组动手操作,教师巡视指导) 2、用三角形全等的方法证明这个命题。(由于难度较大,由教师示范证明过程) 已知:在△ABC中,AB=,BC=,AC=,并且,如上图(1)。 求证:∠C=90°。 证明

5、 : 作△A’B’C’,使∠C’=90°,A’C’=, B’C’=,如上图(2),   那么A’B’ =(勾股定理) 又∵(已知) ∴A’B’=,A’B’=c (A’B’>0)   在△ABC和△A’B’C’中,   BC==B’C’     CA==C’A’     AB==A’B’   ∴△ABC≌△A’B’C’(SSS) ∴∠C=∠C’=90°,   ∴△ABC是直角三角形 勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角

6、形是直角三角形。 【强调说明】(1)勾股定理及其逆定理的区别。 (2)勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。 5、如果原命题成立,那么逆命题也成立吗?你能举出互为逆定理的例子吗? (4)应用举例 1、例题 判断由线段,,组成的三角形是不是直角三角形: (1),,; (2),,。 2、像15、8、17这样,能够成为直角三角形三条边长度的三个正整数,称为勾股数。你还能举出其它一组勾股数吗? (5)练习巩固 1. 判断由线段,,组成的三角形是不是直角三角形: (1),,; (2),,; (3),,; (4),,。 2.如果三条线段长,,满足,这

7、三条线段组成的三角形是不是直角三角形?为什么? 3.说出下列命题的逆命题。这些命题的逆命题成立吗? (1)两条直线平行,内错角相等; (2)如果两个实数相等,那么它们的绝对值相等; (3)全等三角形的对应角相等; (4)角的内部到角的两边的距离相等的点在角的平分线上。 (6)、课堂总结 通过这节课的学习,你有什么收获?还有什么困惑? 这节课我们学习了: 1、勾股定理的逆定理。 2、如何证明勾股定理的逆定理。 3、互逆命题和互逆定理。 4、利用勾股定理的逆定理判定一个三角形是否为直角三角形。 (7)作业布置 P76习题18.2第2、4题。 板书设计 18.2勾股定理的逆定理 一、 古埃及人画直角的方法 二、猜想:如果一个三角形的三边 长满足下面的关系 ,那么这个 三角形是直角三角形。 三、探究 勾股定理的逆定理 :如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 四、应用举例 五、练习巩固 六、课堂总结 七、作业布置

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服