收藏 分销(赏)

勾股定理的逆定理教案.doc

上传人:xrp****65 文档编号:9378915 上传时间:2025-03-24 格式:DOC 页数:4 大小:313.50KB
下载 相关 举报
勾股定理的逆定理教案.doc_第1页
第1页 / 共4页
勾股定理的逆定理教案.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
18.2勾股定理的逆定理(第一课时) 一、教学目标 知识目标: 1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 2、探究勾股定理的逆定理的证明方法。 3、理解原命题、逆命题、逆定理的概念及关系。 能力目标:(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展和形成的过程; (2)通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用。 情感目标:(1)通过用三角形的三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系; (2)通过对勾股定理的逆定理的探索,培养了学生的交流、合作的意识和严谨的学习态度。同时感悟勾股定理和逆定理的应用价值。 二、教学重点难点 重点:证明勾股定理的逆定理;用勾股定理的逆定理解决具体的问题。 难点:理解勾股定理的逆定理的推导。 三、教学准备 圆规、三角板、一根打了13个等距离结的细绳子、钉子、小黑板 四、教学过程 (1)复习旧课 1、在直角三角形中,两直角边长分别是3和4,则斜边长是 。 2.一个直角三角形,量得其中两边的长分别为5㎝、3㎝则第三边的长是_________。 3.要登上8 高的建筑物,为了安全需要,需使梯子底端离建筑物6问至少需要多长的梯子? (2)情境导入 1、在古代,没有直尺、圆规等作图工具,人们是怎样画直角三角形的呢? 【实验观察】 用一根打了13个等距离结的细绳子,在小黑板上,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用三角板量出最大角的度数.可以发现这个三角形是直角三角形。(这是古埃及人画直角的方法) 2、 用圆规、刻度尺作△ABC,使AB=5㎝,AC=4㎝,BC=3㎝,量一量∠C。 再画一个三角形,使它的三边长分别是5㎝、12㎝、13㎝,这个三角形有什么特征? 3、为什么用上面的三条线段围成的三角形,就一定是直角三角形呢?它们的三边有怎样的关系?(学生分组讨论,教师适当指导) 学生猜想:如果一个三角形的三边长满足下面的关系,那么这个三角形是直角三角形。 4、指出这个命题的题设和结论,对比勾股定理,理解互逆命题。 (3)探究新知 1、探究:在下图中,△ABC的三边长,,满足。如果△ABC是直角三角形,它应该与直角边是,的直角三角形全等。实际情况是这样吗?我们画一个直角三角形A‘B’C‘, 使∠C’=90°,A‘C’=,B‘C’=。把画好的△A‘B’C‘ 剪下,放到△ABC上,它们重合吗?(学生分组动手操作,教师巡视指导) 2、用三角形全等的方法证明这个命题。(由于难度较大,由教师示范证明过程) 已知:在△ABC中,AB=,BC=,AC=,并且,如上图(1)。 求证:∠C=90°。 证明 : 作△A’B’C’,使∠C’=90°,A’C’=, B’C’=,如上图(2),   那么A’B’ =(勾股定理) 又∵(已知) ∴A’B’=,A’B’=c (A’B’>0)   在△ABC和△A’B’C’中,   BC==B’C’     CA==C’A’     AB==A’B’   ∴△ABC≌△A’B’C’(SSS) ∴∠C=∠C’=90°,   ∴△ABC是直角三角形 勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 【强调说明】(1)勾股定理及其逆定理的区别。 (2)勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理。 5、如果原命题成立,那么逆命题也成立吗?你能举出互为逆定理的例子吗? (4)应用举例 1、例题 判断由线段,,组成的三角形是不是直角三角形: (1),,; (2),,。 2、像15、8、17这样,能够成为直角三角形三条边长度的三个正整数,称为勾股数。你还能举出其它一组勾股数吗? (5)练习巩固 1. 判断由线段,,组成的三角形是不是直角三角形: (1),,; (2),,; (3),,; (4),,。 2.如果三条线段长,,满足,这三条线段组成的三角形是不是直角三角形?为什么? 3.说出下列命题的逆命题。这些命题的逆命题成立吗? (1)两条直线平行,内错角相等; (2)如果两个实数相等,那么它们的绝对值相等; (3)全等三角形的对应角相等; (4)角的内部到角的两边的距离相等的点在角的平分线上。 (6)、课堂总结 通过这节课的学习,你有什么收获?还有什么困惑? 这节课我们学习了: 1、勾股定理的逆定理。 2、如何证明勾股定理的逆定理。 3、互逆命题和互逆定理。 4、利用勾股定理的逆定理判定一个三角形是否为直角三角形。 (7)作业布置 P76习题18.2第2、4题。 板书设计 18.2勾股定理的逆定理 一、 古埃及人画直角的方法 二、猜想:如果一个三角形的三边 长满足下面的关系 ,那么这个 三角形是直角三角形。 三、探究 勾股定理的逆定理 :如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。 四、应用举例 五、练习巩固 六、课堂总结 七、作业布置
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服