1、二次函数的应用(3)
学习目标:利用二次函数解决几何问题
例1. 如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
例2.如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,A点的坐标为
2、4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AO上的动点,过点Q作QE∥AC,交BC于点E,连接CQ,当△CQE的面积最大时,求点Q的坐标
O
D
C
B
A
y
x
E
Q
练习:
1. 如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.(1)求抛物线对应的函数表达式;
O
B
x
y
A
M
C
1
(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;
3、
2. 如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)在抛物线上求点M,使△MOB的面积是△AOB面积的3倍;
(3)连结OA,AB,在x轴下方的抛物线上是否存在点N,使△OBN与△OAB相似?若存在,求出N点的坐标;若不存在,说明理由
y
x
O
A
B
3.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
O
A
C
x
y
B
(1)求此抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;