ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:64.50KB ,
资源ID:9359138      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9359138.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(第1讲正弦定理和余弦定理-.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第1讲正弦定理和余弦定理-.doc

1、第1讲 正弦定理和余弦定理 基础梳理 1.正弦定理:===2R,其中R是三角形外接圆的半径.由正弦定理可以变形为: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C; (3)sin A=,sin B=,sin C=等形式,以解决不同的三角形问题. 2.余弦定理:a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.余弦定理可以变形为:cos A=,cos B=,cos C=. 3.S△ABC=absin C=bcsin A=acsin B==(a+b+c)

2、·r(R是三角形外接圆半径,r是三角形内切圆的半径),并可由此计算R,r. 双基自测 1.在△ABC中,A=60°,B=75°,a=10,则c等于(  ). A.5 B.10 C. D.5 2.在△ABC中,若=,则B的值为(  ). A.30° B.45° C.60° D.90° 3.(2011·郑州联考)在△ABC中,a=,b=1,c=2,则A等于(  ). A.30° B.45° C.60° D.75° 4.在△ABC中,a=3,b=2,cos C

3、=,则△ABC的面积为(  ). A.3 B.2 C.4 D. 5.已知△ABC三边满足a2+b2=c2-ab,则此三角形的最大内角为________.    考向一 利用正弦定理解三角形 【训练1】 (2013北京)在△ABC中,若b=5,∠B=,tan A=2,则sin A=________;a=________. 考向二 利用余弦定理解三角形 【例2】►在△ABC中,a、b、c分别是角A、B、C的对边,且=-. (1)求角B的大小; (2)若b=,a+c=4,求△ABC的面积. (1)根据所给等式的结构特

4、点利用余弦定理将角化边进行变形是迅速解答本题的关键. (2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2013·桂林模拟)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2 +cos A=0. (1)求角A的值; (2)若a=2,b+c=4,求△ABC的面积. 判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三 考向三 正、余弦定理的综

5、合应用 【例3】►在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C=. (1)若△ABC的面积等于,求a,b; (2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积. [审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a,b的方程,通过方程组求解;第(2)问根据sin C+sin(B-A)=2sin 2A进行三角恒等变换,将角的关系转换为边的关系,求出边a,b的值即可解决问题. 正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多

6、的元素,再通过这些新的条件解决问题. 【训练3】 (2013·北京西城一模)设△ABC的内角A,B,C所对的边长分别为a,b,c,且cos B=,b=2. (1)当A=30°时,求a的值; (2)当△ABC的面积为3时,求a+c的值. 【示例】►(2011·安徽)在△ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,1+2cos(B+C)=0,求边BC上的高. 【试一试】 (2013辽宁)△ABC的三个内角A,B,C所对的边分别为a,b,c,asin Asin B+bcos2 A=a. (1)求; (2)若c2=b2+a2,求B.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服