ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:32.75KB ,
资源ID:9352785      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9352785.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(二次函数与实际问题----图形的最大面积.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

二次函数与实际问题----图形的最大面积.docx

1、实际问题与二次函数 (第1课时) ----二次函数与几何面积最值问题 临潼区油槐初中 赵美丽 教学目标 知识技能: 1.正确理解题意,分析问题中的变量和常量. 2.能根据题意,列出二次函数的关系式. 3.能将实际问题转化为二次函数模型.结合二次函数的性质,讨论最值问题. 过程与方法: 1.经历二次函数的建模过程,提高学生分析问题、解决问题的能力. 2.经历用二次函数解决问题的探索过程,增强学生的应用意识. 情感态度:通过学生解决实际的问题,增强学生学习数学的兴趣,培养学生学数学,用

2、数学的意识.让学生真正的意识到数学是从实践中来,到实践中去,是一门有用的学科. 教学重点 能根据题意,列出二次函数的关系式,解决实际问题. 教学难点 能根据题意,列出二次函数的关系式.能根据实际问题,结合二次函数的性质,讨论最值问题. 教学过程 一、 复习导入 说出下列抛物线的开口方向、对称轴和顶点坐标,并写出其最值. (1)y=x2-4x-5; (2)y=-x2-3x+4. (学生独立完成,组内交流答案.) 一般地,当a>0(a<0),抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(大)值.

3、 这节课,我们来学习利用二次函数的知识如何来求几何面积中的最值问题。 二、新课教学 1.问题 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2 (0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少? 教师引导学生找出问题中的两个变量:小球的高度h(单位:m)与小球的运动时间t(单位:s).然后画出函数h=30t-5t2 (0≤t≤6)的图象(可见教材第49页图). 根据函数图象,可以观察到当t取顶点的横坐标时,这个函数有最大值.也就是说,当小球运动的时间是3s时,小球最高,小球运动中的最大高度

4、是45m. (教师引导分析,学生思考交流完成) 2.例题 用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大? 问题1 矩形面积公式是什么? 问题2 如何用l表示另一边? 问题3 面积S的函数关系式是什么? (学生独立思考后,一生回答,教师指正) 变式1 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 问题1 变式1与例题有什么不同? 问题2 我们可以设面积为S,如何设自变量? 问题3 面积S的函数关系式是什么

5、 问题4 如何求解自变量x的取值范围?墙长32m对此题有什么作用? 问题5 如何求最值? (师生共同分析完成变式1,教师强调确定自变量范围) 变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少? 问题1 变式2与变式1有什么异同? 问题2 可否模仿变式1设未知数、列函数关系式? 问题3 可否试设与墙平行的一边为x米?则如何表示另一边? 问题4 当x=30时,S取最大值,此结论是否正确? 问题5 如何求自变量的取值范围? 问题6 如何求最值? (变式2学生分小

6、组 讨论交流,全班分享,教师点评,指出最值不一定在顶点处) 注意:实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点、何时取端点处才有符合实际的最值. 方法小结:(教师引导完成) 二次函数解决几何面积最值问题的方法 1.求出函数解析式和自变量的取值范围; 2.配方变形,或利用公式求它的最大值或最小值, 3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内. 三.课堂练习 1.如图1,用长8m的铝合金条制成如图的矩形窗框,那么最大的透光面积

7、是 . 2.如图2,在△ABC中, ∠B=90 °,AB=12cm,BC=24cm,动点P从点A开始沿AB向B以2cm/s的速度移动(不与点B重合),动点Q从点B开始BC以4cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过 秒,四边形APQC的面积最小. 四、课堂小结 今天学习了什么,有什么收获? 如何来求几何面积的最值? 1.求出函数解析式和自变量的取值范围; 2.配方变形,或利用公式求它的最大值或最小值, 3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内. (学生交流,互相补充) 五、布置作业 课本习题22.3 4、5、6、7 题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服