ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:298.50KB ,
资源ID:9273266      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9273266.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(第4章学案18.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

第4章学案18.doc

1、学案18 三角函数的图象与性质 导学目标: 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间内的单调性. 自主梳理 1.周期函数 (1)周期函数的定义 对于函数f(x),如果存在一个非零常数T,使得定域内的每一个x值,都满足__________,那么函数f(x)就叫做周期函数,非零常数____叫做这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个________________,那么这个____

2、就叫做f(x)的最小正周期. 2.三角函数的图象和性质 函数 y=sin x y=cos x y=tan x 图象 定义域 值域 周期性 奇偶性 单调性 在______________上增,在______________上减 在_____________上增, 在_____________上减 在定义域的每一个区间____________________内是增函数 对称性 对称中心 (kπ,0) (k∈Z) (kπ+,0) (k∈Z) (,0) (k∈Z) 对称轴

3、 x=kπ+, (k∈Z) x=kπ, (k∈Z) 无 自我检测 1.设点P是函数f(x)=sin ωx(ω≠0)的图象C的一个对称中心,若点P到图象C的对称轴的距离的最小值是,则f(x)的最小正周期是________. 2.函数y=3-2cos(x-)的最大值为________,此时x=________. 3.函数y=tan(-x)的定义域是________. 4.比较大小:sin(-)________sin(-). 5.如果函数y=3cos(2x+φ)的图象关于点中心对称,那么|φ|的最小值为________. 探究点一 求三角函数的定义域 例1 求函数y=+

4、的定义域. 变式迁移1 函数y=+lg(2sin x-1)的定义域为________________________. 探究点二 三角函数的单调性 例2 求函数y=2sin的单调区间. 变式迁移2 (1)求函数y=sin,x∈[-π,π]的单调递减区间; (2)求函数y=3tan的周期及单调区间. 探究点三 三角函数的值域与最值 例3 已知函数f(x)=2asin(2x-)+b的定义域为[0,],函数的最大值为1,最小值为-5,求a和b的值. 变式迁移3 设函数f(x)=acos x+b的最大值是1,最小值是-3,

5、试确定g(x)=bsin(ax+)的周期. 转化与化归思想 例 (14分)求下列函数的值域: (1)y=-2sin2x+2cos x+2; (2)y=3cos x-sin x,x∈[0,]; (3)y=sin x+cos x+sin xcos x. 【答题模板】 解 (1)y=-2sin2x+2cos x+2=2cos2x+2cos x =2(cos x+)2-,cos x∈[-1,1]. 当cos x=1时,ymax=4,当cos x=-时,ymin=-, 故函数值域为[-,4].[4分] (2)y=3cos x-sin x=2cos(x+). ∵

6、x∈[0,],∴≤x+≤,∵y=cos x在[,]上单调递减, ∴-≤cos(x+)≤,∴-≤y≤3,故函数值域为[-,3].[9分] (3)令t=sin x+cos x,则sin xcos x=,且|t|≤. ∴y=t+=(t+1)2-1,∴当t=-1时,ymin=-1; 当t=时,ymax=+. ∴函数值域为[-1,+].[14分] 【突破思维障碍】  1.对于形如f(x)=Asin(ωx+φ),x∈[a,b]的函数在求值域时,需先确定ωx+φ的范围,再求值域.同时,对于形如y=asin ωx+bcos ωx+c的函数,可借助辅助角公式,将函数化为y=sin(ωx+φ)+c的

7、形式,从而求得函数的最值. 2.关于y=acos2x+bcos x+c(或y=asin2x+bsin x+c)型或可化为此型的函数求值域,一般可化为二次函数在闭区间上的值域问题. 给你提个醒!不论用什么方法,切忌忽略函数的定义域. 1.熟练掌握正弦函数、余弦函数、正切函数的定义、图象和性质是研究三角问题的基础,三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实质上就是解最简单的三角不等式(组). 2.三角函数的值域问题,实质上是含有三角函数的复合函数的值域问题. 3.函数y=Asin(ωx+φ) (A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看作一个整体,利

8、用y=sin x的单调区间来求. (满分:90分) 一、填空题(每小题6分,共48分) 1.函数y=Asin(ωx+φ) (A,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω=________. 2.(2010·江苏6校高三联考)已知函数y=tan ωx (ω>0)与直线y=a相交于A、B两点,且|AB|最小值为π,则函数f(x)=sin ωx-cos ωx的单调增区间是________. 3.(2011·江苏四市联考)若函数f(x)=2sin ωx(ω>0)在[-,]上单调递增,则ω的最大值为________. 4.把函数y=cos(x+)的图象

9、向左平移φ(φ>0)个单位,所得的函数为偶函数,则φ的最小值是________. 5.关于函数f(x)=4sin(2x+)(x∈R)有下列命题: (1)由f(x1)=f(x2)=0可得x1-x2必是π的整数倍; (2)y=f(x)的表达式可改写为y=4cos(2x-); (3)y=f(x)的图象关于点(-,0)对称; (4)y=f(x)的图象关于x=-对称. 其中正确命题的序号是________.(把你认为正确的命题序号都填上) 6.(2011·泰州调研)定义函数f(x)=给出下列四个命题: ①该函数的值域为[-1,1]; ②当且仅当x=2kπ+(k∈Z)时,该函数取得最大值

10、 ③该函数是以π为最小正周期的周期函数; ④当且仅当2kπ+π

11、)+a(ω>0)与g(x)=2cos(2x+φ)+1的图象的对称轴完全相同. (1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间; (3)当x∈[0,]时,f(x)的最小值为-2,求a的值. 10.(14分)已知函数f(x)=,求它的定义域和值域,并判断它的奇偶性. 11.(14分)(2010·宿迁高三二模)已知向量a=(sin x,2sin x),b=(2cos x,sin x),定义f(x)=a·b-. (1)求函数y=f(x),x∈R的单调递减区间; (2)若函数y=f(x+θ) (0<θ<)为偶函数,求θ的值.

12、 答案 自主梳理 1.(1)f(x+T)=f(x) T (2)最小的正数 最小的正数 2.R R {x|x≠kπ+,k∈Z} [-1,1] [-1,1] R 2π 2π π 奇函数 偶函数 奇函数 [2kπ-,2kπ+] (k∈Z) [2kπ+,2kπ+π](k∈Z) [2kπ-π,2kπ] (k∈Z) [2kπ,2kπ+π] (k∈Z) (kπ-,kπ+)(k∈Z) 自我检测 1.π 2.5 +2kπ(k∈Z) 3.{x|x≠kπ+,k∈Z} 4.> 5. 课堂活动区 例1 解题导引 求三角函数的定义域时,需要转化为三角不等式(组)求解,常常借助于三角函数的图象和周期

13、解决,求交集时可以利用单位圆,对于周期相同的可以先求交集再加周期的整数倍即可. 解 要使函数有意义, 则得 所以函数的定义域为. 变式迁移1 ,k∈Z 解析 由题意得⇒, 解得, 即x∈,k∈Z. 例2 解题导引 求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ (ω>0)”视为一个“整体”;②A>0 (A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反). 解 方法一 y=2sin化成y=-2sin.

14、 ∵y=sin u(u∈R)的递增、递减区间分别为 (k∈Z)、(k∈Z), ∴令2kπ+≤x-≤2kπ+(k∈Z), 解得2kπ+≤x≤2kπ+(k∈Z), 令2kπ-≤x-≤2kπ+ (k∈Z), 解得2kπ-≤x≤2kπ+ (k∈Z). ∴函数y=2sin的单调递减区间、单调递增区间分别为 (k∈Z)、 (k∈Z). 方法二 y=2sin可看作是由y=2sin u与u=-x复合而成的.又∵u=-x为减函数, ∴由2kπ-≤u≤2kπ+(k∈Z), 即2kπ-≤-x≤2kπ+ (k∈Z), 得-2kπ-≤x≤-2kπ+ (k∈Z), 即(k∈Z)为 y=2sin

15、的递减区间. 由2kπ+≤u≤2kπ+ (k∈Z), 即2kπ+≤-x≤2kπ+ (k∈Z), 得-2kπ-≤x≤-2kπ- (k∈Z), 即(k∈Z)为 y=2sin的递增区间. 综上可知,y=2sin的递增区间为 (k∈Z); 递减区间为 (k∈Z). 变式迁移2 解 (1)由y=sin, 得y=-sin, 由-+2kπ≤2x-≤+2kπ 得-+kπ≤x≤+kπ,k∈Z,又x∈[-π,π], ∴-π≤x≤-π,-≤x≤π,π≤x≤π. ∴函数y=sin,x∈[-π,π]的单调递减区间为,,. (2)函数y=3tan的周期T==4π. 由y=3tan 得y=

16、-3tan, 由-+kπ<-<+kπ得 -π+4kπ0,则,解得; 若a<0,则,解得. 综上可知,a=12-6,b=-23+12 或a=-12+6,b=19-12. 变式迁移3 解 ∵x∈R,∴cos x∈[-1,1]. 若a>0,则,解得; 若a<0,则,解得

17、 所以g(x)=-sin(2x+)或g(x)=sin(2x-),周期为π. 课后练习区 1.3 解析 由图可知,T=,∴ω==3. 2. (k∈Z) 3. 4. 解析 向左平移φ个单位后的解析式为y=cos(x++φ), 当+φ=kπ(k∈Z)时,函数y=cos(x++φ)为偶函数, ∴φ=kπ-(k∈Z).当k=2时,φmin=. 5.(2)(3) 解析 (1)不正确.可举反例,如f(-)=f()=0但--=-. (2)正确.∵y=4sin(2x+)=4cos[-(2x+)] =4cos(-2x+)=4cos(2x-). (3)正确.∵f(-)=0, ∴y=f

18、x)的图象与x轴交于(-,0)点. (4)不正确.∵f(-)既不是y的最大值也不是y的最小值.故答案为(2)(3). 6.1 解析 当2kπ+≤x≤2kπ+(k∈Z)时,sin x≥cos x,所以f(x)=sin x,f(x)∈[-,1];x=2kπ+(k∈Z)时,该函数取得最大值; 当且仅当2kπ+π

19、错误,④正确,周期还是2π,所以③错误. 7.4π 解析 由f(x1)≤f(x)≤f(x2)知,f(x1)、f(x2)分别为f(x)的最小值和最大值,而当=2kπ-,即x=8kπ-2π (k∈Z)时,f(x)取最小值;而=2kπ+,即x=8kπ+2π (k∈Z)时,f(x)取最大值, ∴|x1-x2|的最小值为4π. 8. 解析 线段P1P2的长即为sin x的值,且其中的x满足6cos x=5tan x,x∈,解得sin x=.所以线段P1P2的长为. 9.解 (1)∵f(x)和g(x)的对称轴完全相同, ∴二者的周期相同,即ω=2,f(x)=2sin(2x+)+a,……………

20、……………………(3分) ∴f(x)的最小正周期T==π. …………………………………………………………(5分) (2)当2kπ+≤2x+≤2kπ+, 即kπ+≤x≤kπ+(k∈Z)时,函数f(x)单调递减, 故函数f(x)的单调递减区间为 [kπ+,kπ+](k∈Z).………………………………………………………………(10分) (3)当x∈[0,]时,2x+∈[,],…………………………………………………(12分) ∴当x=时,f(x)取得最小值, ∴2sin(2·+)+a=-2,∴a=-1.……………………………………………………(14分) 10.解 由题意知cos 2x

21、≠0,得2x≠kπ+, 解得x≠+ (k∈Z). ∴f(x)的定义域为{x∈R|x≠+,k∈Z}.……………………………………………(4分) 又f(x)== =cos2x-1=-sin2x,……………………………………………………………………(8分) 又∵定义域关于原点对称,∴f(x)是偶函数.…………………………………………(10分) 显然-sin2x∈[-1,0], 又∵x≠+,k∈Z,∴-sin2x≠-. ∴原函数的值域为 .……………………………………………………………(14分) 11.解 f(x)=2sin xcos x+2sin2x- =sin 2x+2·- =sin 2x-cos 2x=2sin.………………………………………………………(4分) (1)令2kπ+≤2x-≤2kπ+,k∈Z 解得单调递减区间是,k∈Z.………………………………………(8分) (2)f(x+θ)=2sin. 根据三角函数图象性质可知, y=f(x+θ) 在x=0处取最值, ∴sin=±1, ∴2θ-=kπ+,θ=+,k∈Z.……………………………………………………(12分) 又0<θ<,解得θ=.…………………………………………………………………(14分)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服