ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:134.86KB ,
资源ID:9150309      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/9150309.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(导数公式表、导数的四则运算法则、导数的几何意义.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

导数公式表、导数的四则运算法则、导数的几何意义.doc

1、济南市长清中学 高二数学(理科)导学案 编号:X2-2-1 课型:新授课 编制人: 李震 审核人: 李震 年级主任: 班级: 姓名: 课题:导数公式表、导数的四则运算法则、导数的几何意义 【学习要求】 1.能利用给出的基本初等函数的导数公式求简单函数的导数. 2.理解函数的和、差、积、商的求导法则. 3.能够综合运用导数公式和导数运算法则求函数的导数. 4.理解导数的几何意义.根据导数的几何意义,会求曲线上某点处的切线方程. 【学法指导】 1.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间

2、的联系. 2. 应用导数的四则运算法则和已学过的常用函数的导数公式可迅速解决一类简单函数的求导问题.要透彻理解函数求导法则的结构内涵,注意挖掘知识的内在联系及其规律,通过对知识的重新组合,达到巩固知识、提升能力的目的. 【知识要点】 1.几个常用函数的导数 原函数 导函数 f(x)=c f′(x)=___ f(x)=x f′(x)=___ f(x)=x2 f′(x)=___ f(x)= f′(x)=_____ f(x)= f′(x)=_______ 2.基本初等函数的导数公式 原函数 导函数 y=c y′=____ y=xn(n∈N+) y′=__

3、 y=sin x y′=________ y=cos x y′=________ y=ax(a>0,a≠1) y′=________ y=ex y′=_____ y=logax(a>0,a≠1,x>0) y′=______ y=ln x y′=______ 3. 导数的运算法则 设两个可导函数分别为f(x)和g(x) 两个函数的 和的导数 [f(x)+g(x)]′=________________ 两个函数的 差的导数 [f(x)-g(x)]′=_________________ 两个函数的 积的导数 =_________________

4、 两个函数的 商的导数 =___________________ 4.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的 .也就是说,曲线y=f(x)在点P(x0,f(x0))处的切线的斜率是 .相应地,切线方程为_______________________. 【问题探究】 探究点一 导数的运算法则 例1 求下列函数的导数: (1)y=3x-lg x; (2)y=(x2+1)(x-1); (3)y=. 跟踪训练1 求下列函数的导数: (1)f(x)=x·tan

5、 x; (2)f(x)=2-2sin2; (3)f(x)=; (4)f(x)=. 探究点二 求切线的方程 问题1 怎样求曲线f(x)在点(x0,f(x0))处的切线方程? 问题2 曲线f(x)在点(x0,f(x0))处的切线与曲线过某点(x0,y0)的切线有何不同? 例2 已知曲线y=x2,求: (1)曲线在点P(1,1)处的切线方程; (2)曲线过点P(3,5)的切线方程. 跟踪训练2 已知曲线y=2x2-7,求: (1)曲线上哪一点的切线平行于直线4x-y-2=0? (2)曲线过点P(3,9)的切线方程.

6、 探究点三 导数的应用 例3(1)曲线y=xex+2x+1在点(0,1)处的切线方程为_______________ (2)在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线斜率为2,则点P的坐标为________ (3)已知某运动着的物体的运动方程为s(t)=+2t2(位移单位:,时间单位:s),求t=3 s时物体的瞬时速度. 跟踪训练3 (1)曲线y=-在点M处的切线的斜率为 (  ) A.- B. C.- D. (2)设函数f(x)=x3-x2+bx+c,其中a>0,

7、曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,确定b、c的值. 【巩固练习】 1.设y=-2exsin x,则y′等于 (  ) A.-2excos x B.-2exsin x C.2exsin x D.-2ex(sin x+cos x) 2.曲线f(x)=在点(-1,-1)处的切线方程为(  ) A.y=2x+1 B.y=2x-1 C.y=-2x-3 D.y=-2x+2 3.已知f(x)=ax3+3x2+2,若f′(-1)=4,则a的值是(  ) A. B.

8、C. D. 4.已知f(x)=x3+3xf′(0),则f′(1)=_______ 5.已知曲线f(x)=2x2上一点A(2,8),则点A处的切线斜率为 (  ) A.4 B.16 C.8 D.2 6.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则 (  ) A.a=1,b=1 B.a=-1,b=1 C.a=1,b=-1 D.a=-1,b=-1 7.已知曲线y=2x2+4x在点P处的切线斜率为16,则P点坐标为_______ 8.已知抛物线y=ax2+bx+c过点(1,1),且在点(2,-1)

9、处与直线y=x-3相切,求a、b、c的值. 【课堂小结】 1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归. 2.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点. 【拓展提高】 1.已知函数的图象在点处的切线方程是,则 2.设为曲线:上的点,且曲线在点处切线倾斜角的取值范围为,则点横坐标的取值范围为 3.若函数f(x)=ex cos x,则此函数的图象在点(1,f(1))处的切线的倾斜角为(  ) A.0° B.锐角 C.直角 D.钝角 4.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为___________ 【教学反思】 个性笔记 第 5 页 共 5 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服