ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:114.50KB ,
资源ID:8991936      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8991936.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(平方差与完全平方差复习课.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

平方差与完全平方差复习课.doc

1、§15.2平方差公式与完全平方公式复习课(1课时) 建新中学 黄赛金 学习目标:1进一步熟悉乘法公式,体会公式中字母的含义. 2利用添括号法则灵活应用平方差公式与完全平方公式 3两公式的综合运用培养符号感和推理能力. 4培养学生观察、归纳、概括的能力. 教学重点:理解添括号法则,进一步熟练应用平方差公式与完全平方公式 教学难点:在多项式与多项式的乘法中适当添括号达到灵活应用公式的目的. 教学用具:小黑板 教学方法:讲授、学生练习; 教学过程: 一 、 预习检查: 1。回顾公式:(a+b)(a-b)=a2-b2 (a+b)2=a2+2ab+b2 (a-

2、b)2=a2-2ab+b2 2。看书P155/提出问题。 在运用公式的时候,有些时候我们需要把一个多项式看作一个整体,把另外一个多项式看作另外一个整体。例如:和,这就需要在式子里添加括号。那么如何加括号呢?它有什么法则呢?它与去括号有何关系呢? 3。在等号右边的括号内填上恰当的项: (1)a+b-c=a+( ) (2)a-b+c=a-( ) (3)a-b-c=a-( ) (4)a+b+c=a-( ) 4。判断下列运算是否正确. (1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)

3、3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5) 二 、 讲授新课: 1教师板书平方差公式与全平方公式 2.学生直接口答3,4,教师点评 活动三:展示探究 由预学作业2,让学生小组归纳出添括号法则: 添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确. 例一:计算: (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2 (3)(x+5)2-(x-2)(x-3) 练习: (a+b+3)(a+b-3)

4、 (2)两个连续奇数的平方差一定是8的倍数吗 例二:计算: (1)(x+2)(2-x)(x2+4) (2) 98×102×10004 练习:计算:9982 532 例三:如果︱x+y-5︱+︱xy-6︱=0,求x2+y2的值 例四:计算: (1)(2+1)(22+1)(24+1)…(264+1)+1的值 四、课堂小结 添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确 (2)综合应用平方差与完全平方公式 五、当堂检测题:

5、 六、课后练习 一。选择题: 1。下列变形正确的是( ) A。2a-b-c/2=2a-(b-c/2) B. m-3n+2a-b=m +(3n+2a-b) C.2x-3y+2 = -(-2x+3y-2) D.a-2b-4c+5=(a-2b)-(4c+5) 2. 利用平方差公式计算(a-b+c)(a+b-c)的结果是( ) A .a2-(b-c)2 B. a2- (b+c)2 C. (a-b)2 – c2 D. (a-c)2 – b2 3. 下列各式相乘时,可以利用平方差公式计算的是( ) A.(-x-y)(x-

6、y) B. (-x-y)(x+y) C. (x-y)(-x+y) D.(x-y-z)(-x+y+z) 4. 若x2+4x+a=(x-b)2 ,则 a,b的值( ) A.a=4,b=-2 B.a=2,b=2 C.a=4,b=4 D.a=2,b=-2 5.当x取任意实数时,代数式x2-2x+3的值( ) A.大于0 B。小于0 C。等于0 D。不能确定 6。对于任意整数m,多项式(4m+5)2-9都能( ) A。被8整除 B。被m整除 C. 被m-1整除

7、 D. 被2m-1整除 7.计算20042-2003×2005的结果是( ) A. 1 B. -1 C. 0 D. 2×20042-1 8. 下列计算正确的是( ) A.(-4x)(2x2+3x+1)=-8x3-12x2-4x B.(x+y)( x2+y2)= x3+y3 C.(-3a-1)(3a+1)=1-9 a2 D. (a+2b)2=a2+2ab+b2 二。填空题: 1.在等号右边的括号内填上适当的项:a + b –c = a + ( ),a -b +c =

8、a-( ) 2. (a + b –c) ( a - b + c) = _ 3. ( 2x + y – 3 )2 = _ 4. 16 x2 –( ) = (4x + y)(4x – y) 5. 若a2 - b2 = 4, 则( a – b )2( a + b )2 = _ 6. 若(2a + 2b +1) ( 2a +2 b -1)=63, 那么( a + b )2 = _ 三。解答题: (1) (2) (3) (4) (5) (6) (7)4

9、992 (8)882 2 x2 + y2 = 13, xy = 5, 求 ( x – y )2的值 3 .先化简,再求值: 已知x2 – 4 = 0, 求x(x+1)2 – x(x2 + x) – x - 7的值 已知 求与的值。 已知求与的值。 已知求与的值。 已知求与的值。 已知,求的值。 已知,求的值。 4 解方程: (2x+1)(2x-1)-4( x + 2 )2 = x 5求证:(m+5)2 – (m-7)2 一定是24的倍数 6已知m2+ n2 –

10、 6m + 10n + 34 = 0, 求m + n的值 7.已知,求的值。 8将一个正方形的一边增加3cm,相邻的一边减少3cm,则得到长方形的面积与这个正方形每一边都减少1cm,所得到的正方形的面积相等,求这个长方形的面积。 9试说明不论x,y取何值,代数式的值总是正数。 对于任意整数n, 整式(3n+1)(3n-1) – (3-n)(3+n)是不是10的倍数?为什么? 10三角形ABC的三边长分别为a,b,c且a,b,c满足等式,请说明该三角形是什么三角形? 11求的值 12下面的解答过程,求y2 + 4y + 8的最小值 解:y2 + 4y + 8 = y2 + 4y + 4 + 4 = (y+2)2 + 4≥4,∴y2 + 4y + 8的最小值是4。仿照上面的解答过程,求m2 + m + 4的最小值和4 - x2 + 2x的 最大值

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服