ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:532KB ,
资源ID:8953749      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8953749.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(课外辅导---平面向量(学生版).doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

课外辅导---平面向量(学生版).doc

1、 你的习惯决定你的一生 千秋 高考总复习——平面向量 高考中的平面向量主要分为三个部分: 一、向量的概念与几何运算 二、平面向量的坐标运算 三、平面向量的数量积 一、向量的概念与几何运算 1.向量的有关概念 ⑴ 既有 又有 的量叫向量. 的向量叫零向量. 的向量,叫单位向量. ⑵ 叫平行向量,也叫共线向量.规定零向量与任一向量

2、 . ⑶ 且 的向量叫相等向量. 2.向量的加法与减法 ⑴ 求两个向量的和的运算,叫向量的加法.向量加法按 法则或 法则进行.加法满足 律和 律. ⑵ 求两个向量差的运算,叫向量的减法.作法是将两向量的 重合,连结两向量的 ,方向指向 . 3.实数与向量的积 ⑴ 实数与向量的积是一个向量,记作.它的长度与方向规定如下: ① | |= . ② 当>0时,的方

3、向与的方向 ; 当<0时,的方向与的方向 ; 当=0时, . ⑵ (μ)= . (+μ)= . (+)= . ⑶ 共线定理:向量与非零向量共线的充要条件是有且只有一个实数λ使得 . 4.⑴ 平面向量基本定理:如果、是同一平面内的两个不共线的向量,那么对于这一平面内的任一向量,有且只有一对实数、,使得 . ⑵ 设、是一组基底,=,=,则与共线的充要条件是 . 例:已知向量,,,其中、不共线,求实数、,使.

4、 二、平面向量的坐标运算 1.平面向量的坐标表示 分别取与x轴、y轴方向相同的两个单位向量、作为基底,对于一个向量,有且只有一对实数x、y,使得=x+y.我们把(x、y)叫做向量的直角坐标,记作 .并且||= . 2.向量的坐标表示与起点为 的向量是一一对应的关系. 3.平面向量的坐标运算: 若=(x1、y1),=(x2、y2),λ∈R,则: += -= λ= 已知A(x1、y1),B(x2、y2),则= . 4

5、.两个向量=(x1、y1)和=(x2、y2)共线的充要条件是 . 例1.已知点A(2,3),B(-1,5),且=,求点C的坐标. 变式训练1.若,,则= . 例2. 已知向量=(cos,sin),=(cos,sin),|-|=,求cos(α-β)的值. 变式训练2.已知-2=(-3,1),2+=(-1,2),求+. 例3. 已知向量=(1, 2),=(x, 1),=+2,=2-,且∥,求x. 变式训练3.设=(ksinθ, 1),=(2-cosθ, 1) (0 <θ<π),∥,求证:k≥.

6、 A M B C D P 例4. 在平行四边形ABCD中,A(1,1),=(6,0),点M是线段AB的中点,线段CM与BD交于点P. (1) 若=(3,5),求点C的坐标; (2) 当||=||时,求点P的轨迹. 变式训练4.在直角坐标系x、y中,已知点A(0,1)和点B(-3,4),若点C在∠AOB的平分线上,且||=2,求的坐标. 三、平面向量的数量积 1.两个向量的夹角:已知两个非零向量和,过O点作=,=,则∠AOB=θ (0°≤θ≤180°) 叫做向量与的 .当θ=0°时,与 ;当θ=180

7、°时,与 ;如果与的夹角是90°,我们说与垂直,记作 . 2.两个向量的数量积的定义:已知两个非零向量与,它们的夹角为θ,则数量 叫做与的数量积(或内积),记作·,即·= .规定零向量与任一向量的数量积为0.若=(x1, y1),=(x2, y2),则·= . 3.向量的数量积的几何意义: ||cosθ叫做向量在方向上的投影 (θ是向量与的夹角). ·的几何意义是,数量·等于 . 4.向量数量积的性质:设、都是非零向量,是单位向量,θ是与的夹

8、角. ⑴ ·=·= ⑵ ⊥ ⑶ 当与同向时,·= ;当与反向时,·= . ⑷ cosθ= . ⑸ |·|≤ 5.向量数量积的运算律: ⑴ ·= ; ⑵ (λ)·= =·(λ) ⑶ (+)·= 例1. 已知||=4,||=5,且与的夹角为60°,求:(2+3)·(3-2). 变式训练1.已知||=3,||=4,|+|=5,求|2-3|的值. 例2. 已知向量=(sin,1),=(1,cos),-. (1) 若a⊥b,求

9、 (2) 求|+|的最大值. 变式训练2:已知,,其中. (1)求证: 与互相垂直; (2)若与的长度相等,求的值(为非零的常数). 例3. 已知O是△ABC所在平面内一点,且满足(-)·(+-2)=0,判断△ABC是哪类三角形. 变式训练3:若,则△ABC的形状是 . 例4. 已知向量=(cosθ, sinθ)和=(-sinθ, cosθ) θ∈(π, 2π)且||=,求cos()的值. 变式训练4.平面向量,若存在不同时为的实数和,使,且,试求函数关系式. - 4 - 请保持良好的学习习惯

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服