ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:209.50KB ,
资源ID:8949893      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8949893.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(利用导数求函数的极(最)值05.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

利用导数求函数的极(最)值05.doc

1、高二数学教学案(人文) 利用导数求函数的极(最)值预习案 一、知识链接: 复习1:设函数y=f(x) 在某个区间内有导数,如果在这个区间内,那么函数y=f(x) 在这个区间内为 函数;如果在这个区间内,那么函数y=f(x) 在为这个区间内的 函数. 复习2:用导数求函数单调区间的步骤:①求函数f(x)的导数. ②令 解不等式,得x的范围就是递增区间.③令 解不等式,得x的范围,就是递减区间 . 二、预习自学 自学课本P96--98 下列结论中,正确的是( ) A.导数为零的点一定是极值点 B

2、如果在附近的左侧,右侧,那么是极大值 C.如果在附近的左侧,右侧,那么是极小值 D.如果在附近的左侧,右侧,那么是极大值 利用导数求函数的极(最)值教学案 一、学习目标 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤. 二、学习重难点:重点:利用导数知识求函数的极值 ,最值 三、课内探究 探究任务一:函数的极大(小)值 问题1:如下图,函数在等点的函数值与这些点附近的函数值有什么关系?在这些点的导数值是多少?在这些点附近,的导数的符号有什么规律? 看出,函数在点的函数值比它在点附近其

3、它点的函数值都 , ;且在点附近的左侧 0,右侧 0. 类似地,函数在点的函数值比它在点附近其它点的函数值都 , ;而且在点附近的左侧 0,右侧 0. 新知: 我们把点a叫做函数的极小值点,叫做函数的极小值;点b叫做函数的极大值点,叫做函数的极大值. 极大值点、极小值点统称为极值点,极大值、极小值统称为极值. 极值反映了函数在某一点附近的 ,刻画的是函数的 . 试试: (1)函数

4、的极值 (填是,不是)唯一的. (2) 一个函数的极大值是否一定大于极小值. (3)函数的极值点一定出现在区间的 (内,外)部,区间的端点 (能,不能)成为极值点. 反思:极值点与导数为0的点的关系: 导数为0的点是否一定是极值点 。比如:函数在x=0处的导数为 ,但它 (是或不是)极值点. 即:导数为0是点为极值点的 条件. 探究任务二:函数的最大(小)值 问题:观察在闭区间上的函数的图象,你能找出它的极大(小)值吗?最大值,最小值呢? 图2 在图1中,

5、在闭区间 上的最大值是 ,最小值是 ; 图1 在图2中,在闭区间 上的极大值是 ,极小值是 ;最大值是 ,最小值是 . 新知:一般地,在闭区间上连续的函数在上必有最大值与最小值. 反思: 1.函数的最值是比较整个定义域内的函数值得出的,是函数的整体性质; 函数的极值是比较极值点附近函数值得出的,是函数的局部性质. 2.函数在闭区间上连续,是在闭区间上有最大值与最小值的 条件 3.函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,可能一个没

6、有. 四、典例分析 例1 已知函数. (1)求函数的极值; (2)画出函数在定义域内的大致图象; (3)求函数在区间[-3,4]上的最大值与最小值。 小结:求可导函数f(x)的极值的步骤: (1)确定函数的定义域; (2)求导数f′(x); (3)求方程f′(x)=0的根 (4)列表格:用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)

7、在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值. 变式1:已知函数. (1)求函数的极大值和极小值;(2)画出它的大致图象. 四、课堂小结: 1. 求可导函数f(x)的极(最)值的步骤; 2. 由导函数图象画出原函数图象;由原函数图象画导函数图象。 五、当堂检测: 1. 求下列函数的极值: (1); (2). 2. 函数的极值情况是( ) A.有极大值,没有极小值 B.有极小值,没有极大值 C.既有极大值又有极小值 D.既无极大值也极小值 3. 三次函数当时,有极大值4;当时,有极小值0,且函数过原点,则此函数是( ) A. B. C. D. 4.函数在[0,3]上的最大值为 ,最小值为 . 利用导数研究函数的极(最)值 第4页 (共4页)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服