ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:122.50KB ,
资源ID:8944648      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8944648.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(正交多项式相关.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正交多项式相关.doc

1、上的正交多项式 由最佳平方逼近的一般理论知,上的最佳平方逼近完全可以转化为正交系的讨论。因为若是f的最佳平方逼近元,则系数向量满足方程组:,而当{φi}为规范正交时,该方程组的解立即可以写为:                        。 正交多项式的性质 假设ω0(x),ω1(x),…是空间上的幂函数系1,x,x2,…经正交化手续得到的正交多项式系,则它有如下性质 (1)ωn(x)是n次代数多项式; (2)任一不高于n次的多项式都可以表示成; (3)ωn(x)在中与所有次数低于n的多项式正交,也即 以下假设是ωn的首一化多项式,也即,且的最高次项系数为1,则仍然是一正

2、交系,且有如下递推关系。 定理1 ,其中: , 。 证明 由于是k+1次多项式,因此可由线性表出,即 (1) 其中cj是适当常数,将(1)式两边同乘以并积分,有 上式左端当s=0,1,…,k-2时,的次数小于k,从而积分值为0,同样右端第一个积分也为0。于是,当s=0,1,…,k-2时,上式变为 令s=0,上式变为 从而c0=0。同理,当s依次为1,…,k-2时,可推出cs=0。于是(1)式可简化为 (2) 下面我们来确定ck,ck-1,在(2)式两边乘以并积分,得 (3) 由于,代入(3)式两端得 同理,用乘(2)式

3、两端并积分,可得 将ck,ck-1代入(2)式两端并加以整理即得定理结论。 如果设ωk(x)的首项系数为αk,则对规范正交系ω0(x),ω1(x),…可以得到如下递推关系 (4) 注:(4)式可通过令代入定理1得到。 定理2 n次正交多项式ωn(x)有n个互异零点,并且都包含在(a,b)中。 证明 令n≥1,假定ωn(x)在(a,b)不变号,则 这与正交性相矛盾。于是至少有一个点x1∈(a,b)使ωn(x1)=0,若x1是重根,则ωn(x)/( x - x1)2是一n-2次多项式,由正交性知 但另一方面有 从而推出x1只能是单根。 今假设ωn(x)在(a,b

4、)内只有j个单根x1, x2,…, xj(j

5、 常用的正交多项式 自然,根据ρ(x)的不同选择,我们可以构造许许多多的正交多项式,这只要分别利用施密特正交化过程就可以完成,然而在这些正交多项式类中,真正有用的是如下几个具有代表性的正交多项式系。 其一是勒让德(Legendre)多项式,它是L2[-1,1]上的正交多项式,并且可以表示成如下形式: (5) 由于是2n次多项式,所以Pn(x) 是n 次多项式,其最高次项系数与单项式 的系数相同。可以证明勒让德多项式具有如下性质: (1) (2)Pn(x)=(-1)n Pn(-x). (3) 其二是第一类契比雪夫多项式,由引理3不难发现,它是在区间[-1,1]上关于权函数的正交多项式。 其三是取,则上的正交多项式定义为 它满足如下的递推公式 和正交性条件

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服