ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:205KB ,
资源ID:8728872      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8728872.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(广州高中数学奥赛班专题资料-由数列的递推公式求通项公式.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

广州高中数学奥赛班专题资料-由数列的递推公式求通项公式.doc

1、由数列的递推公式求通项公式 一 准备知识 所谓数列,简单地说就是有规律的(有限或无限多个)数构成的一列数,常记作{an},an的公式叫做数列的通项公式.常用的数列有等差数列和等比数列. 等差数列 等比数列 定义 数列{an}的后一项与前一项的差an-an-1为常数d 数列{an}的后一项与前一项的比为常数q(q≠0) 专有名词 d为公差 q为公比 通项公式 an=a1+(n-1)d an=a1·qn-1 前n项和 Sn= Sn= 数列的前n项和Sn与通项公式an的关系是:an=Sn-Sn-1(n≥2). 有些数列不是用通项公式给出,而是用an与其前一

2、项或前几项的关系来给出的,例如:an+1=2an+3,这样的公式称为数列的递推公式.由数列的递推公式我们可以求出其通项公式. 数列问题中一个很重要的思想是把数列的通项公式或递推公式变形,然后将它看成新数列(通常是等差或等比数列)的通项公式或递推公式,最后用新数列的性质解决问题. 二 例题精讲 例1.(裂项求和)求Sn=. 解:因为an== 所以Sn==1- 例2.(倒数法)已知数列{an}中,a1=,an+1=,求{an}的通项公式. 解: ∴是以为首项,公差为2的等差数列,即+2(n-1)= ∴an= 练习1.已知数列{an}中,a1=1,Sn=,求{an}的通

3、项公式. 解: ∴是以1为首项,公差为2的等差数列. ∴=1+2(n-1)=2n-1,即Sn=. ∴an=Sn-Sn-1== ∴an= 例3.(求和法,利用公式an=Sn-Sn-1,n≥2)已知正数数列{an}的前n项和Sn=,求{an}的通项公式. 解:S1=a1=,所以a1=1. ∵an=Sn-Sn-1 ∴2Sn=Sn-Sn-1+ ∴Sn+Sn-1=,即Sn2-Sn-12=1 ∴是以1为首项,公差为1的等差数列. ∴Sn2=n,即Sn= ∴an=Sn-Sn-1=-(n≥2) ∴an=-. 例4.(叠加法)已知数列{an}的前n项和Sn满足Sn-Sn-

4、2=3×(-)n-1(n≥3),且S1=1,S2=-,求{an}的通项公式. 解:先考虑偶数项有: S2n-S2n-2=-3· S2n-2-S2n-4=-3· …… S4-S2=-3· 将以上各式叠加得S2n-S2=-3×, 所以S2n=-2+. 再考虑奇数项有: S2n+1-S2n-1=3· S2n-1-S2n-3=3· …… S3-S1=3· 将以上各式叠加得S2n+1=2-. 所以a2n+1=S2n+1-S2n=4-3×,a2n=S2n-S2n-1=-4+3×. 综上所述an=,即an=(-1)n-1·. 例5.(an+1=pan+r类型数列)在数列{an

5、}中,an+1=2an-3,a1=5,求{an}的通项公式. 解:∵an+1-3=2(an-3) ∴{an-3}是以2为首项,公比为2的等比数列. ∴an-3=2n ∴an=2n+3. 练习2.在数列{an}中,a1=2,且an+1=,求{an}的通项公式. 解:an+12=an2+ ∴an+12-1=(an2-1) ∴{an+12-1}是以3为首项,公比为的等差数列. ∴an+12-1=3×,即an= 例6(an+1=pan+f(n)类型)已知数列{an}中,a1=1,且an=an-1+3n-1,求{an}的通项公式. 解:(待定系数法)设an+p·3n=an-

6、1+p·3n-1 则an=an-1-2p·3n-1,与an=an-1+3n-1比较可知p=-. 所以是常数列,且a1-=-. 所以=-,即an=. 练习3.已知数列{an}满足Sn+an=2n+1,其中Sn是{an}的前n项和,求{an}的通项公式. 解:∵an=Sn-Sn-1 ∴Sn+Sn-Sn-1=2n+1 ∴2Sn=Sn-1+2n+1 (待定系数法)设2(Sn+pn+q)=Sn-1+p(n-1)+q 化简得:-pn-p-q=2n+1,所以,即 ∴2(Sn-2n+1)=Sn-2(n-1)+1, 又∵S1+a1=2+1=3,∴S1=,S1-2+1= ∴{Sn-2n

7、1}是以为公比,以为首项的等比数列. ∴S n-2n+1=,即Sn=+2n-1,an=2n+1-Sn=2-. 例7.(an+1=panr型)(2005年江西高考题)已知数列{an}各项为正数,且满足a1=1,an+1=.(1)求证:an0,所以log2(2-an+1)=log2(2-an)2=2·log2(2-an)-1 ∴log2(2-an+1)-1=2[log2(2-an)-1] 即{log2(2-an)-1}是以―1为首项,公比为2的等比数列 ∴log2(2-an)-1=-1×2n-1 化简得an=2-. 练习4.(2006年广州二模)已知函数(). 在数列中,,(),求数列的通项公式. 解:, 从而有, 由此及知: 数列是首项为,公比为的等比数列, 故有()。 例8.(三角代换类型)已知数列{an}中,a1=2,an=,求{an}的通项公式. 解:令an-1=tan,则an+1==tan ∴an=tan.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服