ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:106.50KB ,
资源ID:8224831      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8224831.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【全程复习方略】广东省2013版高中数学-11.2排列与组合课时提能演练-理-新人教A版.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【全程复习方略】广东省2013版高中数学-11.2排列与组合课时提能演练-理-新人教A版.doc

1、【全程复习方略】广东省2013版高中数学 11.2排列与组合课时提能演练 理 新人教A版 (45分钟 100分)一、选择题(每小题6分,共36分)1.不等式Ax86Ax28的解集为()(A)2,8(B)2,6(C)(7,12) (D)82.(2012沈阳模拟)用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为()(A)18(B)108(C)216(D)4323.(易错题)某小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位,该晚会节目演出顺序的编排方案共有()(A)36种 (

2、B)42种 (C)48种 (D)54种4.(2012惠州模拟)从5名男生和5名女生中选3人组成运动队参加某项比赛,其中至少有一名女生入选的组队方案数为()(A)100 (B)110 (C)120 (D)1805.(2012梅州模拟)为了迎接建国63周年国庆,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同.记这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()(A)1 205秒(B)1 200秒(C)1 195秒

3、 (D)1 190秒6.(预测题)2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有2位女生相邻,则不同排法的种数是()(A)60(B)48(C)42(D)36二、填空题(每小题6分,共18分)7.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是.(用数字作答)8.(2012茂名模拟)已知集合A5,B1,2,C1,3,4,从这三个集合中各取一个元素,构成空间直角坐标系中点的坐标,则确定不同点的个数为.9.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).三、解答题(每小题

4、15分,共30分)10.有4个不同的球,四个不同的盒子,把球全部放入盒子内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒子内放2个球,有多少种放法?(4)恰有两个盒子不放球,有多少种放法?11.(1)3人坐在有8个座位的一排上,若每人的左右两边都要有空位,则有多少种不同的坐法?(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?【探究创新】(16分)由四个不同的数字1,2,4,x组成无重复数字的三位数.(1)若x5,其中能被5整除的共有多少个?

5、(2)若x9,其中能被3整除的共有多少个?(3)若x0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x.答案解析1.【解析】选D.6,x219x840,又x8,x20,7x8,xN*,即x8.2.【解析】选D.第一步,先将1,3,5分成两组,共C32A22种方法;第二步,将2,4,6排成一排,共A33种方法;第三步:将两组奇数插到三个偶数形成的四个空位,共有A42种方法.综上共有C32A22A33A4232612432(种).3. 【解题指南】根据甲的位置分类讨论.【解析】选B.分两类:第一类:甲排在第一位,共有A4424种排法;第二类:甲排在第二位,共有A31A33

6、18种排法,所以共有编排方案241842(种),故选B. 4.【解析】选B.至少有一名女生入选,即不能全是男生,故组队方案数为C103C5312010110.5. 【解题指南】先用排列算出闪烁个数A55120,还要考虑每个闪烁间隔的时间.【解析】选C.由题知闪烁的总个数为A55120.每次闪烁时间为5秒,知总闪烁时间为5120600 s,又每两次闪烁之间的间隔为5 s,故闪烁间隔总时间为5(1201)595 s,故总时间为6005951 195 s.6.【解析】选B.方法一:从3名女生中任取2人“捆”在一起记作A(A共有C23A226种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙,则

7、男生甲必须在A、B之间,此时共有6212种排法(A左B右和A右B左),最后在排好的三个元素的4个空位插入乙,所以,共有12448种不同排法.方法二:从3名女生中任取2人“捆”在一起记作A(A共有C32A226种不同排法),剩下一名女生记作B,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A、B在两端,男生甲、乙在中间,共有6A22A2224种排法;第二类:“捆绑”A和男生乙在两端,则中间女生B和男生甲只有一种排法,此时共有6A2212种排法;第三类:女生B和男生乙在两端,同样中间“捆绑”A和男生甲也只有一种排法.此时共有6A2212种排法;三类之和为24121248种.7

8、.【解析】对于7个台阶上每一个只站一人,则有A73种;若有一个台阶有2人,另一个是1人,则共有C31A72种,因此共有不同的站法种数是A73C31A72336.答案:3368.【解析】若不考虑限定条件,确定的点的个数为C11C21C31A3336,但集合B、C中有相同元素1,由5,1,1三个数确定的相同的点有三个.故所求的个数为36333.答案:339.【解析】分两步完成:第一步将4名大学生按2,1,1分成三组,其分法有种;第二步将分好的三组分配到3个乡镇,其分法有A33种,所以满足条件的分配方案有A3336(种).答案:36【变式备选】将5名实习教师分配到高一年级的3个班实习,每班至少1名,

9、最多2名,则不同的分配方案有()(A)30种(B)90种(C)180种 (D)270种【解析】选B.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有15种方法,再将3组分到3个班,共有15A3390种不同的分配方案.10. 【解析】(1)一个球一个球地放到盒子里去,每个球都可有4种独立的放法,由分步乘法计数原理,放法共有44256种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个有C41种可能,再将4个球分成2,1,1的三组,有C24种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.

10、由分步乘法计数原理,共有放法C41C42C31A22144种.(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒子内放2个球”与“恰有一个盒子不放球”是一种情况.故也有144种放法.(4)先从四个盒子中任意拿走两个盒子有C42种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有C43C21种放法;第二类:有C42种放法.因此共有C43C21C4214种.由分步乘法计数原理得“恰有两个盒子不放球”的放法有C421484种.11. 【解题指南】对于问

11、题(1)可理解成3个人不相邻问题,采用插空法;对于问题(2)属定序问题,可进行除法;对于问题(3)属“分名额”问题,可分类求解或用隔板法求解.【解析】(1)由已知有5个座位是空的,我们把3个人看成是坐在座位上的人往5个空座的空隙插,由于这5个空座位之间有4个空,故共有A24种坐法.(2)不考虑条件总的排法数为A120种.则甲在乙的右边的排法数为A60种.(3)方法一:每个学校一个名额,则分去7个,剩余3个名额分到7所学校的方法数就是所求的分配方法种数.若3个名额分到1所学校有7种方法,若分配到2所学校有C242种方法,若分配到3所学校有C35种方法.故共有7423584种方法.方法二:10个元

12、素之间有9个间隔,要求分成7份,相当于用6块隔板插在9个间隔中,共有C84种不同方法.所以名额分配的方法共有84种.【方法技巧】用“隔板法”解决相同元素分配问题:相同元素的分配问题可以在其之间插入隔板来达到分配的目的.它强调的是分配之后每组元素的个数,而与每一组包含哪几个元素无关.【例】将9个完全相同的小球放入编号为1,2,3的三个盒子内,要求每个盒子内的球数不小于其编号数,问有多少种不同的放法.【解析】先将编号为2的盒子放入1个球,编号为3的盒子内放入2个球,然后只需将余下的6个球分成3组,每组至少有1个球即可.6个球有5个空隙,将两块隔板插入这些空隙中有C10种方法,故有10种不同的放法.【探究创新】【解析】(1)5必在个位,所以能被5整除的三位数共有A236个.(2)各位数字之和能被3整除时,该数就能被3整除,这种三位数只能由2,4,9或1,2,9排列组成,共有2A3312个.(3)偶数数字有3个,个位数必是一个偶数,同时0不能在百位,可分两类考虑:0在个位的,有A326个.个位是2或4的,有A21A21A218个,这种偶数共有6814个.(4)显然x0,1,2,4,x在各个数位上出现的次数都相同,且各自出现A31A32次,这样的数字之和是(124x)A31A32,即(124x)A31A32252,7x14,x7.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服