ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:291.50KB ,
资源ID:814809      下载积分:11 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/814809.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(高三艺术班数学一轮复习资料函数模型及其应用.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高三艺术班数学一轮复习资料函数模型及其应用.doc

1、 第二章 函数、导数及其应用 第9讲 函数模型及其应用 一、必记2个知识点 1. 几种常见的函数模型 函数模型 函数解析式 一次函数模型 f(x)=ax+b(a,b为常数,a≠0) 二次函数模型 f(x)=ax2+bx+c(a,b,c为常数,a≠0) 指数函数模型 f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型 f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型 f(x)=axn+b(a,b,n为常数,a≠0,n≠0) 2.三种函数模型性质比较 y=ax(a>1) y=logax(a

2、>1) y=xn(n>0) 在(0,+∞)上的单调性 增函数 增函数 增函数 增长速度 越来越快 越来越慢 相对平稳 图像的变化 随x值增大,图像与y轴接近平行 随x值增大,图像与x轴接近平行 随n值变化而不同 二、必明2个易误区 1.易忽视实际问题的自变量的取值范围,需合理确定函数的定义域. 2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性. 三、必会1个方法 解决实际应用问题的一般步骤 (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用

3、数学知识,建立相应的数学模型; (3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下: 考点一 一次函数与二次函数模型 1.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差(  ) A.10元      B.20元 C.30元 D.元 解析:选A 依题意可设sA(t)=20+kt,sB(t)=mt, 又sA(100)=sB(100),∴100k+20=100

4、m,得k-m=-0.2, 于是sA(150)-sB(150)=20+150k-150m=20+150×(-0.2)=-10, 即两种方式电话费相差10元,选A. 2.(2013·北京西城区抽检)将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个(  ) A.115元 B.105元 C.95元 D.85元 解析:选C 设售价定为(90+x)元,卖出商品后获得利润为:y=(90+x-80)(400-20x)=20(10+x)(20-x)=20(-x2+10x+200)=-2

5、0(x2-10x-200)=-20,∴当x=5时,y取得最大值,即售价应定为:90+5=95(元),选C. 3.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为:y=x2-200x+80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元. 该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损? 解:设该单位每月获利为S, 则S=100x

6、-y=100x-=-x2+300x-80 000=-(x-300)2-35 000, 因为400≤x≤600,所以当x=400时,S有最大值-40 000. 故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损. 求解一次函数与二次函数模型问题的关注点 (1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错; (2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法; (3)解决函数应用问题时,最后要还原到实际问题. 考点二 分段函数模型  提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上

7、的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数. (1)当0≤x≤200时,求函数v(x)的表达式. (2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).  (1)由题意:当0≤x≤20时,v(x)=60; 当20≤x≤200时,设v(x)=ax+b.由已知得解得

8、 故函数v(x)的表达式为v(x)= (2)依题意并由(1)可得 f(x)=当0≤x≤20时,f(x)为增函数,故当x=20时,其最大值为60×20=1 200; 当20

9、给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解. (2)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏. (3)分段函数的最值是各段的最大(最小)者的最大者(最小者). 某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系. (1)分别写出国外市场的日销售量f(t)与上市时间t的关系及国

10、内市场的日销售量g(t)与上市时间t的关系; (2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由. 解:(1)图①是两条线段,由一次函数及待定系数法,得f(t)= 图②是一个二次函数的部分图像,故g(t)=-t2+6t(0≤t≤40). (2)每件样品的销售利润h(t)与上市时间t的关系为h(t)= 故国外和国内的日销售利润之和F(t)与上市时间t的关系为 F(t)= 当0≤t≤20时,F(t)=3t=-t3+24t2, ∴F′(t)=-t2+48t=t≥0,∴F(t)在上是增函数, ∴F(t)在此区间上的最大值

11、为F(20)=6 000<6 300.当20

12、求每年砍伐面积的百分比; (2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?  (1)设每年降低的百分比为x(0

13、行利率、细胞分裂等增长问题可以利用指数函数模型来解决. (2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型. (3)y=a(1+x)n通常利用指数运算与对数函数的性质求解. 提醒:解指数不等式时,一定要化为同底,且注意对应函数的单调性. (2013·长春联合测试)某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为(  ) A.略有盈利 B.略有亏损 C.没有盈利也没有亏损 D.无法判断盈亏

14、情况 解析:选B 设该股民购这支股票的价格为a,则经历n次涨停后的价格为a(1+10%)n=a×1.1n,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a

15、果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系是(  ) A.y=0.1x+800(0≤x≤4 000) B.y=0.1x+1 200(0≤x≤4 000) C.y=-0.1x+800(0≤x≤4 000) D.y=-0.1x+1 200(0≤x≤4 000) 解析:选D y=0.2x+(4000-x)×0.3=-0.1x+1 200.(0≤x≤4 000) 做一做 1.(2014·南昌

16、质检)往外埠投寄平信,每封信不超过20 g,付邮费0.80元,超过20 g而不超过40 g,付邮费1.60元,依此类推,每增加20 g需增加邮费0.80元(信的质量在100 g以内).如果某人所寄一封信的质量为72.5 g,则他应付邮费(  ) A.3.20元       B.2.90元 C.2.80元 D.2.40元 解析:选A 由题意得20×3<72.5<20×4,则应付邮费0.80×4=3.20(元).故选A. 2.(2014·广州模拟)在某个物理实验中,测量得变量x和变量y的几组数据,如下表: x 0.50 0.99 2.01 3

17、98 y -0.99 0.01 0.98 2.00 则对x,y最适合的拟合函数是(  ) A.y=2x B.y=x2-1 C.y=2x-2 D.y=log2x 解析:选D 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=log2x,可知满足题意.故选D. 3.一种产品的成本原为a元,在今后的m年内,计划使成本平均每年比上一年降低p%,成本y是关于经过年数x(0

18、0

19、x)万元, 则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000=-(x-220)2+1 680(0≤x≤210). ∵R(x)在上是增函数,∴x=210时,R(x)有最大值为-(210-220)2+1 680=1 660. ∴年产量为210吨时,可获得最大利润,最大利润是1 660万元. 5.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为(  ) 解析:选D 注意到y为“小王从出发到返回原地所经过

20、的路程”而不是位移,用定性分析法不难得到答案为D. 6.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是(  ) A.y=100x B.y=50x2-50x+100 C.y=50×2x D.y=100log2x+100 解析:选C 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型. 7.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示. 给出以下3个论断:①0点到3点只进水

21、不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是(  ) A.① B.①② C.①③ D.①②③ 解析:选A 由甲、乙两图知,进水速度是出水速度的,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①. 8某种新药服用x小时后血液中的残留量为y毫克,如图所示为函数y=f(x)的图像,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为(  ) A.上午10:00 B.中午12:00 C.

22、下午4:00 D.下午6:00 解析:选C 当x∈时,设y=k1x,把(4,320)代入,得k1=80, ∴y=80x.当x∈时,设y=k2x+b.把(4,320),(20,0)代入得解得 ∴y=400-20x.∴y=f(x)=由y≥240,得或 解得3≤x≤4或4

23、h在附近时,体积变化较快;h小于时,增加越来越快;h大于时,增加越来越慢.答案:② 10.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm的边,下、左、右方都空出1 cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________. 解析:设长为a cm,宽为b cm,则ab=600 cm,则中间文字部分的面积S=(a-2-1)(b-2)=606-(2a+3b)≤606-2=486,当且仅当2a=3b,即a=30,b=20时,S最大=486 cm2.答案:30 cm,20 cm 11.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万

24、元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________. 解析:七月份的销售额为500(1+x%),八月份的销售额为500(1+x%)2,则一月份到十月份的销售总额是3 860+500+2 ,根据题意有 3 860+500+2≥7 000, 即25(1+x%)+25(1+x%)2≥66,令t=1+x%,则25t2+25t-66≥0, 解得t≥或者t≤-(舍去),故1+x%≥,解得x≥20.答案:20 12.(2013·昆明质检)某地近年来持续干旱,为倡导节

25、约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元. (1)写出每户每月用水量x(吨)与支付费用y(元)的函数关系; (2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表: 月用水量x(吨) 3 4 5 6 7 频数 1 3 3 3 2 请你计算该家庭去年支付水费的月平均费用(精确到1元); (3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作

26、出如下统计表: 月用水量x(吨) 1 2 3 4 5 6 7 频数 10 20 16 16 15 13 10 据此估计该地“节约用水家庭”的比例. 解:(1)y关于x的函数关系式为y= (2)由(1)知:当x=3时,y=6;当x=4时,y=8;当x=5时,y=12; 当x=6时,y=16;当x=7时,y=22.所以该家庭去年支付水费的月平均费用为 (6×1+8×3+12×3+16×3+22×2)≈13(元). (3)由(1)和题意知:当y≤12时,x≤5, 所以“节约用水家庭”的频率为=77%,据此估计该地“节约用水家庭”的比例为77%. 1

27、4.已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是θ=m·2t+21-t(t≥0,并且m>0). (1)如果m=2,求经过多长时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m的取值范围. 解:(1)若m=2,则θ=2·2t+21-t=2,当θ=5时,2t+=, 令2t=x(x≥1),则x+=即2x2-5x+2=0,解得x=2或x=(舍去),此时t=1. 所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立,亦m·2t+≥2恒成立,亦即m≥2恒成立. 令=y,则0

28、于y-y2≤,∴m≥. 因此,当物体的温度总不低于2摄氏度时,m的取值范围是. 15.(2014·威海高三期末)对于函数f(x),如果存在锐角θ,使得f(x)的图像绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数f(x)具备角θ的旋转性,下列函数具备角的旋转性的是(  ) A.y= B.y=ln x C.y=x D.y=x2 解析:选C 函数f(x)的图像绕坐标原点逆时针旋转角,相当于x轴、y轴绕坐标原点顺时针旋转角,问题转化为直线y=x+k与函数f(x)的图像不能有两个交点,结合图像可知y=x与直线y=x+k没有两个交点,故选C.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服