ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1,007KB ,
资源ID:8097984      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8097984.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(“放缩法”技巧.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

“放缩法”技巧.doc

1、 例谈“放缩法”证明不等式的基本策略 近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项)

2、 例1、已知求证: 证明: 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例2、函数f(x)=,求证:f(1)+f(2)+…+f(n)>n+. 证明:由f(n)= =1- 得f(1)+f(2)+…+f(n)> . 此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子,

3、分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) 例3、已知an=n ,求证:<3. 证明:=<1+ <1+= =1+ (-) =1+1+--<2+<3. 本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标. 4、放大或缩小“因式”; 例4、已知数列满足求证: 证明 本题通过对因式放大,而得到一个容易求和的式子,最终得出证明. 5、逐项放大或缩小 例5、设求

4、证: 证明:∵ ∴ ∴ , ∴ 本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。 6、固定一部分项,放缩另外的项; 例6、求证: 证明: 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。 7、利用基本不等式放缩 例7、已知,证明:不等式对任何正整数都成立. 证明:要证,只要证 . 因为 ,, 故只要证 , 即只要证 . 因为, 所以命题得证. 本题通过化简整理之后,再利用基本不等式由放

5、大即可. (2)由二项式定理有: (1+m)n=1+Cm+Cm2+…+Cmn, (1+n)m=1+Cn+Cn2+…+Cnm, 求证 证明 本题观察数列的构成规律,采用通项放缩的技巧把一般数列转化成特殊数列,从而达到简化证题的目的。 求证 证明 说明:若本题从第二项起放大,则左边<1+1-<2 ,这使的证明失败. 例 1 4 分析 浅谈用放缩法证明不等式的方法与技巧

6、 放缩法:为放宽或缩小不等式的范围的方法。常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。 所谓放缩的技巧:即欲证,欲寻找一个(或多个)中间变量C,使,由A到C叫做“放”,由B到C叫做“缩”。 常用的放缩技巧还有:(1)若(2) (3)若则(4)(5)(6)或(7)等等。 用放缩法证明下列各题。 例1 求证: 证明:因为所以左边因为99<100(放大)<所以 例2 (2000年海南理11)若求证: 证明:因为所以因为[因为(放大

7、所以又所以是增函数],所以,所以 例3 (2001年云南理1)求证: 证明:(因为) [又因为(放大)],所以所以 例4 已知求证: 证明:因为 例5 求证: 证明:因为(因为)(放大)所以 例6 (2000年湖南省会考)求证:当时,函数的最小值是当时,函数的最大值是 证明:因为原函数配方得又因为所以(缩小),所以函数y的最小值是。当所以(放大),所以函数y的最大值是 例7 求证: 证明:因为(分母有理化)所以原不等式成立。 例8 (2002年贵州省理21)若求证: 证明:因为而所以所以同理可证(当且仅当时,

8、取等号)。 例9 已知a、b、c分别是一个三角形的三边之长,求证: 证明:不妨设据三角形三边关系定理有:便得所以原不等式成立。 例10 (1999年湖南省理16)求证: 证明:因为又所以原不等式成立。 例11 求证: 证明:因为左边证毕。 例12 求证 证明:因为所以左边 注:1、放缩法的理论依据,是不等式的传递性,即若则。2、使用放缩法时,“放”、“缩”都不要过头。3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。常用的有“添舍放缩”和“分式放缩”,都是用于不等式证明中局部放缩。 第 14 页 共 14 页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服