ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:15.96KB ,
资源ID:8090892      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/8090892.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(因式分解—平方差公式运用.docx)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

因式分解—平方差公式运用.docx

1、14.3.2公式法(1) (1)教学目标 1.探索并运用平方差公式进行因式分解,体会转化思想. 2.会综合运用提公因式法和平方差公式对多项式进行因式分解. 教学重点与难点 重点:运用平方差公式法进行因式分解. 难点:观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解. 教学准备 要求学生对平方差公式准确理解. 教学设计 复习引入:问题:1.什么叫因式分解? 使学生回忆因式分解的概念. 2.因式分解和整式乘法有什么关系? 新授 一、探索平方差公式 你能将多项式y2-25与多项式

2、 x2-4分解因式吗? (1)能用提公因式法分解因式吗? (2)这两个多项式有什么共同的特点? (3)能利用整式的乘法公式——平方差公式来解决这个问题吗?你对因式分解的方法有什么新的发现?请尝试着概括你的发现. 把整式的乘法公式——平方差公式反过来就得到因式分解的平方差公式多项式a2-b2有什么特点?叙述这个公式的意义a2-b2=(a+b)(a-b) 两个数的平方差,等于这两个数的和与这两个数的差得积。 学生具体说说这个公式的意义.教师用语句清楚地进行表述 二、理解平方差公式 下列多项式能否用平方差公式来分解因式,为什么? (1) (2) (3) (4) (1)平

3、方差公式的结构特征是什么? (2)两个平方项的符号有什么特点? 适用于平方差公式因式分解的多项式必须是二项式,每一项都为平方项,并且两个平方项的符号相反. 学生先进行思考,教师可视情况作适当的提示,在此基础上讨论这两个多项式有什么共同的特点. 特点:这两个多项式都可以写成两个数的平方差的形式,对于这种形式的多项式,可以利用平方差公式来分解因式. 三、应用平方差公式 例1分解因式: (1)4x2-9 (2) (x+P)2-x+q)2 注:能否用平方差公式进行因式分解,取决于这个多项式是否符合平方差公式的特征,即两个数的平方差,所以要强调多项式是否可化为( )2-( )

4、2的形式.括号里的“东西”是一个整体,它可以是具体的数或单项式或多项式,如(2)题中应是多项式了. 练习 1 将下列多项式分解因式: (1) (2) (3) (4) 例2分解因式 (1)x4-y4 (2)a3b-ab 分析: (1)先把它写成平方差的形式,再分解因式,注意它的第2次分解. (2)现在不具备平方差的特征,引导继续观察特点,发现有公因式ab,应先提公因式,再进一步分解. 学生交流体会:因式分解要进行到不能再分解为止,提公因式法和应用公式法的综合应用.通过对例2的学习,你有什么收获? (1)分解因式必须进行到每一个多项式都不能再分解为止; (2)对具体问题选准方法加以解决. 练习2 分解因式: (1) ;(2) 四、巩固练习 做教科书第117页的练习. 注:注意要将因式分解进行到不能再分解为止. 五、课堂小结 (1)本节课学习了哪些主要内容? (2)因式分解的平方差公式的结构特征是什么? (3)综合运用提公因式法和平方差公式进行因式分解时要注意什么? 六、布置作业 1.教科书第119页习题14.3第1、2、 4(2)题

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服