ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:544.50KB ,
资源ID:7983147      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7983147.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(空间立体几何知识点归纳.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

空间立体几何知识点归纳.doc

1、 第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、 空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图

2、和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系(尽可能使更多的点在坐标轴上) ②建立斜坐标系,使=450(或1350),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半; 一般地,原图的面积是其直观图面积的倍,即 4、空间几何体的

3、表面积与体积 ⑴圆柱侧面积;⑵圆锥侧面积: ⑶圆台侧面积: ⑷体积公式: ;; ⑸球的表面积和体积: .一般地,面积比等于相似比的平方,体积比等于相似比的立方。 第二章 点、直线、平面之间的位置关系及其论证 1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内 公理1的作用:判断直线是否在平面内 2、公理2:过不在一条直线上的三点,有且只有一个平面。 若A,B,C不共线,则A,B,C确定平面 推论1:过直线的直线外一点有且只有一个平

4、面 若,则点A和确定平面 推论2:过两条相交直线有且只有一个平面 若,则确定平面 推论3:过两条平行直线有且只有一个平面 若,则确定平面 公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

5、 公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。 4、公理4:也叫平行公理,平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。 6、线线位置关系:平行、相交、异面。 (1)没有任何公共点的两条直线平行 (2)有一个公共点的两条直线相交 (3)不同

6、在任何一个平面内的两条直线叫异面直线 7、线面位置关系:直线在平面内、平行、相交 8、面面位置关系:平行、相交。 9、线面平行:(即直线与平面无任何公共点) ⑴判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 (只需在平面内找一条直线和平面外的直线平行就可以) 证明两直线平行的主要方法是: ①三角形中位线定理:三角形中位线平行并等于底边的一半; ②平行四边形的性质:平

7、行四边形两组对边分别平行; ③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行; ④平行线的传递性: ⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行; ⑥垂直于同一平面的两直线平行; ⑵直线与平面平行的性质:如果一条直线平行于一个平面,

8、经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;(上面的③) 10、面面平行:(即两平面无任何公共点) (1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 (2)两平面平行的性质: 性质Ⅰ:如果一个平面与两平行平面都相交,那么它们的交线平行; 性质Ⅱ:平行于同一平面的两平面平行;

9、 性质Ⅲ:夹在两平行平面间的平行线段相等; 性质Ⅳ:两平面平行,一平面上的任一条直线与另一个平面平行; 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

10、 ⑶性质Ⅰ:垂直于同一个平面的两条直线平行。 性质Ⅱ:垂直于同一直线的两平面平行 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 (只需在一个平面内找到另一个平面的垂线就可证明面面垂直) ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 证明两直线垂直

11、和主要方法: ①利用勾股定理证明两相交直线垂直; ②利用等腰三角形三线合一证明两相交直线垂直; ③利用线面垂直的定义证明(特别是证明异面直线垂直); ④利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”) 空间角及空间距离的计算 1. 异面直线所成角:使异面直线平移后相交形成的夹角, 通常在两异面直线中的一条上取一点,过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。

12、3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角,二面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ① 确构成二面角两个半平面和棱;②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。 (求空间角的三个步骤是“一找”、“二证”、“三计算”) 5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O为P在平面上的射影, 线段OP的长度为点P到平面的距离 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。如图在三棱锥 中有: - 5 -

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服