收藏 分销(赏)

空间立体几何知识点归纳.doc

上传人:pc****0 文档编号:7983147 上传时间:2025-01-29 格式:DOC 页数:5 大小:544.50KB 下载积分:10 金币
下载 相关 举报
空间立体几何知识点归纳.doc_第1页
第1页 / 共5页
空间立体几何知识点归纳.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、 空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系(尽可能使更多的点在坐标轴上) ②建立斜坐标系,使=450(或1350),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半; 一般地,原图的面积是其直观图面积的倍,即 4、空间几何体的表面积与体积 ⑴圆柱侧面积;⑵圆锥侧面积: ⑶圆台侧面积: ⑷体积公式: ;; ⑸球的表面积和体积: .一般地,面积比等于相似比的平方,体积比等于相似比的立方。 第二章 点、直线、平面之间的位置关系及其论证 1 、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内 公理1的作用:判断直线是否在平面内 2、公理2:过不在一条直线上的三点,有且只有一个平面。 若A,B,C不共线,则A,B,C确定平面 推论1:过直线的直线外一点有且只有一个平面 若,则点A和确定平面 推论2:过两条相交直线有且只有一个平面 若,则确定平面 推论3:过两条平行直线有且只有一个平面 若,则确定平面 公理2及其推论的作用:确定平面;判定多边形是否为平面图形的依据。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 公理3作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。 4、公理4:也叫平行公理,平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 作用:该定理也叫等角定理,可以用来证明空间中的两个角相等。 6、线线位置关系:平行、相交、异面。 (1)没有任何公共点的两条直线平行 (2)有一个公共点的两条直线相交 (3)不同在任何一个平面内的两条直线叫异面直线 7、线面位置关系:直线在平面内、平行、相交 8、面面位置关系:平行、相交。 9、线面平行:(即直线与平面无任何公共点) ⑴判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 (只需在平面内找一条直线和平面外的直线平行就可以) 证明两直线平行的主要方法是: ①三角形中位线定理:三角形中位线平行并等于底边的一半; ②平行四边形的性质:平行四边形两组对边分别平行; ③线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行; ④平行线的传递性: ⑤面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行; ⑥垂直于同一平面的两直线平行; ⑵直线与平面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;(上面的③) 10、面面平行:(即两平面无任何公共点) (1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 (2)两平面平行的性质: 性质Ⅰ:如果一个平面与两平行平面都相交,那么它们的交线平行; 性质Ⅱ:平行于同一平面的两平面平行; 性质Ⅲ:夹在两平行平面间的平行线段相等; 性质Ⅳ:两平面平行,一平面上的任一条直线与另一个平面平行; 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 ⑶性质Ⅰ:垂直于同一个平面的两条直线平行。 性质Ⅱ:垂直于同一直线的两平面平行 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 (只需在一个平面内找到另一个平面的垂线就可证明面面垂直) ⑶性质:两个平面互相垂直,则一个平面内垂直于交线的直线垂直于另一个平面。 证明两直线垂直和主要方法: ①利用勾股定理证明两相交直线垂直; ②利用等腰三角形三线合一证明两相交直线垂直; ③利用线面垂直的定义证明(特别是证明异面直线垂直); ④利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”,“线斜垂”) 空间角及空间距离的计算 1. 异面直线所成角:使异面直线平移后相交形成的夹角, 通常在两异面直线中的一条上取一点,过该点作另一条直线平行线, 2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图:PA是平面的一条斜线,A为斜足,O为垂足,OA叫斜线PA在平面上射影,为线面角。 3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角,二面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直 用二面角的平面角的定义求二面角的大小的关键点是: ① 确构成二面角两个半平面和棱;②明确二面角的平面角是哪个? 而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。 (求空间角的三个步骤是“一找”、“二证”、“三计算”) 5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。 如图:O为P在平面上的射影, 线段OP的长度为点P到平面的距离 求法通常有:定义法和等体积法 等体积法:就是将点到平面的距离看成是 三棱锥的一个高。如图在三棱锥 中有: - 5 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服