ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:46.50KB ,
资源ID:7818232      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7818232.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(中考数学专题复习之四:数学的方程思想教案.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中考数学专题复习之四:数学的方程思想教案.doc

1、 中考数学专题复习之四:数学的方程思想 【中考题特点】:方程和方程组是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。很多数学问题,特别是有未知数的几何问题,就需要用方程或方程组的知识来解决,在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系,列出方程或方程组来解决,这就是方程思想。具有方程思想就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。【范例讲析】:例1:已知:如图,正方形ABCD的边长为a,PQA是其内接等边三角形。求:PB的长。 例2: 如图,在ABC中,B=

2、30,ACB=120,D是BC上一点,且ADC=45,若CD=8,求BD的长。 例3: 已知:如图,在梯形ABCD中,ADBC,B90,AB14cm,AD18cm, BC21cm,点P从点A开始沿AD边向点D以1cm秒的速度移动,点Q从点C开始沿CB边向点B以2cm秒的速度移动。如果P、Q分别从A、C同时出发。PADQCEB设移动的时间为t。求:(1)t为何值时,梯形PQCD是等腰梯形;(2)t为何值时,AB的中点E到线段PQ的距离为7 cm。例4:如图,在ABC中,AC、BC的长是关于x的方程x2(AB+4)x+4AB+8=0的两个根,且25BCsinA=9AB,BD是半圆的直径,O为圆心,

3、AC切O于E,BC交O于F。试求:ABC的三边长;AD的长。 y O A B x C 例5:如图,抛物线x2pxq与轴交于、两点,与轴交于点,若ACB90O ,且tanCAOtanABO=2。(1)求Q的值,(2)求此抛物线的解析式。(3)设平行于x轴的直线交抛物线于、两点。若以为直径的圆恰好与x轴相切,求此圆的半径。 【练习】:1 已知关于x的一元二次方程x2+2x+p2=0有两个实数根x1和x2,在数轴上表示x1的点在表示x2的点的右边,且相距p+1,求p的值。2已知关于x的方程:4x28nx3n=2, x2(n+3)x2n2+2=0. 问是否存在实数n,使方程的两根的差的平方等于方程的一个整数根?若存在,求出n的值;若不存在,请说明理由。CQABP3已知:如图,ABC中,AB5,BC3,AC4,PQAB,P点在AC上(与点A、C不重合),Q点在BC上。(1) 当PQC的面积与四边形PABQ的面积相等时,求CP的长;(2) 当PQC的周长与四边形PABQ的周长相等时,求CP的长;(3) 试问:在AB上是否存在点M,使得PQM为等腰直角三角形?若不存在,请简要说服理由;若存在,请求出PQ的长。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服