1、51 定积分概念 5. 7 反常积分 一、无穷限的反常积分 定义1 设函数f(x)在区间a, +)上连续, 取ba . 如果极限 存在, 则称此极限为函数f(x)在无穷区间a, +)上的反常积分, 记作, 即. 这时也称反常积分收敛. 如果上述极限不存在, 函数f(x)在无穷区间a, +)上的反常积分就没有意义, 此时称反常积分发散. 类似地, 设函数f(x)在区间(-, b 上连续, 如果极限(a0). 解 . 提示: . 例3 讨论反常积分(a0)的敛散性. 解 当p=1时, . 当p1时, . 因此, 当p1时, 此反常积分收敛, 其值为; 当p1时, 此反常积分发散. 二、无界函数的反
2、常积分 定义2 设函数f(x)在区间(a, b上连续, 而在点a的右邻域内无界. 取e0, 如果极限存在, 则称此极限为函数f(x)在(a, b上的反常积分, 仍然记作, 即. 这时也称反常积分收敛. 如果上述极限不存在, 就称反常积分发散. 类似地, 设函数f(x)在区间a, b)上连续, 而在点b 的左邻域内无界. 取e0, 如果极限存在, 则称此极限为函数f(x)在a, b)上的反常积分, 仍然记作, 即. 这时也称反常积分收敛. 如果上述极限不存在, 就称反常积分发散. 设函数f(x)在区间a, b上除点c(acb)外连续, 而在点c的邻域内无界. 如果两个反常积分与都收敛, 则定义.
3、 否则, 就称反常积分发散. 瑕点: 如果函数f(x)在点a的任一邻域内都无界, 那么点a称为函数f(x)的瑕点, 也称为无界 定义2 设函数f(x)在区间(a, b上连续, 点a为f(x)的瑕点. 函数f(x)在(a, b上的反常积分定义为. 在反常积分的定义式中, 如果极限存在, 则称此反常积分收敛; 否则称此反常积分发散. 类似地,函数f(x)在a, b)(b为瑕点)上的反常积分定义为. 函数f(x)在a, c)(c, b (c为瑕点)上的反常积分定义为 . 反常积分的计算: 如果F(x)为f(x)的原函数, 则有 .可采用如下简记形式: . 类似地, 有 , 当a为瑕点时,; 当b为瑕点时,. 当c (ac1时, . 当q1时, . 因此, 当q1时, 此反常积分收敛, 其值为; 当q1时, 此反常积分发散. 5