ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:426.71KB ,
资源ID:7685378      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7685378.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高三数学压轴小题训练(十).doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高三数学压轴小题训练(十).doc

1、 高三数学小题冲刺训练(十)姓名:_班级:_考号:_一、填空题(共16小题,每小题5分,共计80分) 1集合x|1log10,xN*的真子集的个数是 2复平面上,非零复数z1,z2在以i为圆心,1为半径的圆上,z2的实部为零,z1的辐 角主值为,则z2=_ 3.曲线C的极坐标方程是=1+cos,点A的极坐标是(2,0),曲线C在它所在的平面内绕A 旋转一周,则它扫过的图形的面积是_4.已知将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱的长为2,则最远的两顶点间的距离是_5.从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每 面

2、恰染一种颜色,每两个具有公共棱的面染成不同的颜色。则不同的染色方法共有_种(注:如果我们对两个相同的正方体染色后,可以通过适当的翻转,使得两个正方体的上、下、左、右、前、后六个对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同)6.在直角坐标平面,以(199,0)为圆心,199为半径的圆周上整点(即横、纵坐标皆为整数的点)的个数为_7. 若,则= .8. 在复数集C内,方程的解为 .9. 设,求数x的个位数字.10. 设,则集合A中被7除余2且不能被57整除的数的个数为_.11. 设P是抛物线上的动点,点A的坐标为,点M在直线PA上,且分所成的比为2:1,则点M的轨迹方程是 .12.

3、为上在轴两侧的点,过的切线与轴围成面积的最小值为_13.为边长为的正五边形边上的点则最长为_14. 正四棱锥S-ABCD中,侧棱与底面所成的角为,侧面与底面所成的角为,侧面等腰三角形的底角为,相邻两侧面所成的二面角为,则、的大小关系是_15. 在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记为An,令an=log2An,nN(1) 数列An的前n项和Sn为_(2)Tn=tana2tana4+tana4tana6+tana2ntana2n+2=_16.已知数列A:a1,a2,an(n3),令TA=x|x=ai+aj.1ijn,car(TA)表示集合TA中元索

4、的个数若A:2,4,8,16,则card(TA)=_;若ai+1-ai=c(c为非零常数1in-1),则card(TA)=_参考答案1. 解 由已知,得logx1011lgx210x100故该集合有90个元素其真子集有290-1个2. 解:z1满足|zi|=1;argz1=,得z1=+i,=cos()+isin()设z2的辐角为(0),则z2=2sin(cos+isin)z2=2sincos()+isin(),若其实部为0,则=,于是=z2=+i3. 解:只要考虑|AP|最长与最短时所在线段扫过的面积即可设P(1+cos,),则|AP|2=22+(1+cos)222(1+cos)cos=3co

5、s22cos+5=3(cos+)2+且显然|AP|2能取遍0,内的一切值,故所求面积=4. 解:该六面体的棱只有两种,设原正三棱锥的底面边长为2a,侧棱为b取CD中点G,则AGCD,EGCD,故AGE是二面角ACDE的平面角由BDAC,作平面BDF棱AC交AC于F,则BFD为二面角BACD的平面角AG=EG=,BF=DF=,AE=2=2由cosAGE=cosBFD,得= =9b2=16a2,b=a,从而b=2,2a=3AE=2即最远的两个顶点距离为35. 解:至少3种颜色:6种颜色全用:上面固定用某色,下面可有5种选择,其余4面有(41)!=6种方法,共计30种方法;用5种颜色:上下用同色:6

6、种方法,选4色:C(41)! =30;6302=90种方法;用4种颜色:CC=90种方法用3种颜色:C=20种方法共有230种方法6. 解:把圆心平移至原点,不影响问题的结果故问题即求x2+y2=1992的整数解数显然x、y一奇一偶,设x=2m,y=2n1且1m,n99则得4m2=1992(2n1)2=(198+2n)(2002n)m2=(99+n)(100n)(n1)(n) (mod 4)由于m为正整数,m20,1 (mod 4);(n1)(n)二者矛盾,故只有(0,199),(199,0)这4解 共有4个(199,199),(0,0),(398,0)7. 由,得,有,即.则,原式=.8.

7、设,代入原方程整理得有,解得或,所以或.9. 直接求x的个位数字很困难,需将与x相关数联系,转化成研究其相关数.【解】令,由二项式定理知,对任意正整数n. 为整数,且个位数字为零.因此,是个位数字为零的整数.再对y估值,因为, 且,所以 故x的个位数字为9.【评述】转化的思想很重要,当研究的问题遇到困难时,将其转化为可研究的问题.10. 解:被除余的数可写为. 由.知. 又若某个使能被57整除,则可设=57n. 即. 即应为7的倍数. 设代入,得. . m=0,1.于是所求的个数为11. 设点P,M,有,得,而,于是得点M的轨迹方程是.【解析】 12.不妨设过点的切线交轴于点,过点的切线交轴于

8、点,直线与直线相交于点如图设,且有由于,于是的方程为;的方程为 联立的方程,解得对于,令,得;对于,令,得于是不妨设,则 不妨设,则有 6个 9个 又由当时,处的等号均可取到注记:不妨设,事实上,其最小值也可用导函数的方法求解由知当时;当时则在上单调减,在上单调增于是当时取得最小值13.以正五边形一条边上的中点为原点,此边所在的直线为轴,建立如图所示的平面直角坐标系当中有一点位于点时,知另一点位于或者时有最大值为;当有一点位于点时,;当均不在轴上时,知必在轴的异侧方可能取到最大值(否则取点关于轴的对称点,有)不妨设位于线段上(由正五边形的中心对称性,知这样的假设是合理的),则使最大的点必位于线段上且当从向移动时,先减小后增大,于是;对于线段上任意一点,都有于是由,知不妨设为下面研究正五边形对角线的长如右图做的角平分线交于易知于是四边形为平行四边形由角平分线定理知解得14. 15.16. 6;2n-3

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服