1、
第2讲
和倍问题
知识精讲
已知两个量,要比较谁多谁少是很容易的。但如果从一个量中拿出一部分放到另一个量中,再比较它们的多少,就有些复杂了。像这样的问题,我们可以开动脑筋,借助线段图来进行分析,就一定能找到解题的方法。
学会分析较为隐蔽的和差倍问题,进一步掌握画线段图的方法,学会利用不变量进行分析的方法,注意选取合适的“一”倍量。
公式:
一、和倍问题(已知大小两个数的和及它们的倍数关系,求这两个数各是多少的问题)
两数和(倍数+1)=小数(1倍数) 小数×倍数=大数
二、差倍问题(已知两个数的差及它们的倍数关系,求这两个数各是多少的问题)
较小数=差(
2、倍数1)
三、和差问题(已知大小两个数的和与这两个数的差,求这两个数各是多少的问题)
较大数=(和+差) 2 较小数=(和差) 2
四、年龄问题:
(1)年龄差不变 (2)年龄的倍数关系是变化的
经典例题
【例1】小方和小明的铅笔支数相等,如果小方给小明4支铅笔,这时小明比小方多几支铅笔?
【练习1】小军给了小玲8本故事书后,两人书就同样多了,原来小军比小玲多几本故事书?
【例2】有两筐苹果,如果从甲筐中拿8个苹果给乙筐,这时甲 比乙筐还多5个苹果,原来甲筐比乙筐多多少个苹果?
【练习2】有两盒粉笔,从第一盒里拿3支给第二盒,这时
3、第一盒还比第二盒多1支,原来第一盒比第二盒多多少支粉笔?
【例3】根据线段图列式:
【练习3】小华和爷爷今年共72岁,爷爷的岁数是小华的7倍.爷爷比小华大多少岁?
【例4】体育馆有排球和篮球共180个,篮球是排球的3倍,体育馆有篮球和排球各多少个?
【练习4】小明和妈妈的年龄加在一起是40岁,妈妈的年龄是小明年龄的4倍,问小明和妈妈各是多少岁?
【例5】舞蹈队共有队员42人,其中女队员比男队员的2倍少3人,求男、女队员各有多少人?
【练习5】某校四、五年级共有学生160人,四年级比五年级的2倍少8人,问:四、五年级
4、各有学生多少人?
【例6】弟弟有课外书20本,哥哥有课外书25本。哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?
【练习6】弟弟有12张邮票,哥哥有32张邮票。哥哥给弟弟多少张后,哥哥的邮票才是弟弟的2倍?
【例7】甲、乙两个书架共有120本书,后来从甲书架取出15本书放到乙书架,这时甲书架的书是乙书架的3倍,甲书架原有书多少本?
【练习7】甲、乙两个粮库共存粮180吨,后来从甲库运到乙库10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?
【例8】甲、乙两堆货物一共有160件,已知甲堆货物比乙堆货物的3倍还多40件,甲、乙两堆各有
5、多少件货物?
【练习8】书架上放着一些童话小说和科幻小说,一共有47本。童话小说的数量比科幻数量的4倍少3本。书架上放着多少本科幻小说?
【例9】糖果盒一共有奶糖、水果糖、咖啡糖140颗,已知奶糖颗数是水果糖的2倍,求奶糖、水果糖和咖啡糖各有多少颗?
【练习9】三条绳子共长250米,其中第一条绳长是第二条的3倍,第三条是第一条的2倍,三条绳子各长多少米?
思路归纳
解和倍应用题的关键是要找标准数(即1倍数),一般说来,题中说是“谁”的几倍,把谁就确定为标准数。和倍问题解答时,我们采用的是代换的思路,用1倍数去代替几倍数,看和相当于1倍数的几倍,即除以几,先求出1倍数,然后再求出几倍数。
注意画线段来解决这类问题,并会总结公式。
- 2 -
第2讲 和倍问题