ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:163.50KB ,
资源ID:7660572      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7660572.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【xrp****65】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【xrp****65】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第11讲不等式的证明.doc)为本站上传会员【xrp****65】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中国人民大学附中特级教师梁丽平高考数学综合能力题30讲第11讲不等式的证明.doc

1、Doc521资料分享网(D) 资料分享我做主!数学高考综合能力题选讲11不等式的证明100080 北京中国人民大学附中 梁丽平题型预测证明不等式的基本方法有:求差(商)比较法,综合法,分析法,有时用反证法,数学归纳法均值定理、适度的放缩、恰当的换元是证明不等式的重要技巧不等式的证明往往与其它知识(如函数的性质)综合起来考查范例选讲例1 已知,求证:讲解: 可以用比较法:解1 因为,所以,所以,所以,命题得证解2 因为,所以,所以,由解1可知:上式1故命题得证点评:比较法是证明不等式的基本思路例2 证明不等式:,讲解:此题为与自然数有关的命题,故可考虑用数学归纳法证明解1 时,不等式的左端=1,

2、右端=2,显然12,所以,时命题成立假设时命题成立,即:则当时,不等式的左端不等式的右端由于= 所以,即时命题也成立由可知:原不等式得证从上述证法可以看出:其中用到了这一事实,从而达到了和之间的转化,也即和之间的转化,这就提示我们,本题是否可以直接利用这一关系进行放缩?观察原不等式,如果希望直接证明,需要把左端进行化简,直接化简是不可能的,但如果利用进行放缩,则可以达到目的,由此得解2解2 因为对于任意自然数,都有,所以,从而不等式得证点评:放缩法是一种证明的技巧,要想用好它,必须有目标,目标可以从要证的结论中考察如本题中注意到所要求证的式子左右两端的差异,以及希望把左式化简的目标例3 设,若

3、,, 试证明:对于任意,有.讲解:要研究这个二次函数的性质,最好的办法是能够确定其解析式本题中,所给条件并不足以确定参数的值,但应该注意到:所要求的结论也不是的确定值,而是与条件相对应的“取值范围”,因此,我们可以把,和当成两个独立条件,先用和来表示. , , . 当时,所以,根据绝对值不等式的性质可得:, 综上,问题获证. 点评:用好绝对值不等式及其等号成立的条件,常常可以简化问题,避免讨论高考真题1. (1985年全国高考)设a (n1,2,3),证明不等式对所有的正整数n都成立2. (1993年全国高考)如果关于x的实系数二次方程x2axb0有两个实数根、,证明:.如果|2,|2,那么2|a|4b且|b|4;.如果2|a|4b且|b|4,那么|2,|2.(93年(29)10分)3. (2001年全国高考)已知是正整数,且.()证明 ;()证明 .答案与提示:1放缩法,利用;2略; 3利用排列数公式及二项式定理Doc521资料分享网(D) 资料分享我做主!

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服