ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:41.50KB ,
资源ID:7640208      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7640208.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(七年级数学下册 第二章回顾与反思教案 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

七年级数学下册 第二章回顾与反思教案 北师大版.doc

1、回顾与反思 教学设计教学设计思想:本节为一堂复习课;教师可以从现实生活中导入课题,以问题的形式帮助学生总结本章的内容,在学生充分思考、交流的基础上,引导学生梳理本章的结构框架,再通过练习的形式对内容加以巩固.一、教学目标(一)知识与技能1.熟记补角、余角、对顶角的概念及其性质.2.掌握平行线的特征.3.掌握平行线的条件.4.利用尺规作简单的图形.(二)过程与方法1.通过复习进一步巩固对补角、余角、对顶角的掌握.2.通过复习掌握直线平行的条件以及平行线的特征,并会应用它们去说理.(三)情感、态度与价值观1.经历观察、操作、想象、交流等过程,进一步发展学生的空间概念.2.进一步激发学生对数学方面的

2、兴趣,体验从数学的角度认识现实.二、教学重难点(一)教学重点运用补角、余角的性质解决问题;运用直线平行的条件及平行线的特征解决实际问题.(二)教学难点几何语言的理解以及用自己的语言表述理由,书写自己的理由.三、教具准备投影片.四、教学方法小组讨论法.五、教学安排1课时.六、教学过程.创设情景,引入新课师平行线、相交线在现实生活中随处可见,同时它们又构成同一平面内两条直线的基本位置关系.在这一章里,我们探索了平行线、相交线的有关事实,并以直观认识为基础进行简单的说明,将直观与简单的推理相结合,且借助平行的有关结论解决一些简单的实际问题.下面我们以问题形式来顺理本章的有关内容.讲授新课师现在同学们

3、独自思考下列问题,并回答.1生活中有哪些平行线和相交线的例子?2两条直线相交,至少有几对相等的角?3判断两条直线是否平行,通常有哪些路径?4平行线有哪些特征?生甲生活中平行线和相交线的例子很多;如:立交桥、房屋等等.生乙两条直线相交,形成两对对顶角.这两对对顶角相等,所以,两条直线相交,至少有两对角相等.生丙判断两条直线平行的途径有:(1)定义;(2)两条直线都和第三条直线平行,则这两条直线相互平行;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行.生丁:平行线的特征:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.下面我们用一个知识

4、框图来表述这一章的内容(幻灯片展示图片知识结构).课堂练习例1已知:如图5,ABCD,求证:B+D=BED。分析:可以考虑把BED变成两个角的和。如图5,过E点引一条直线EFAB,则有B=1,再设法证明D=2,需证EFCD,这可通过已知ABCD和EFAB得到。证明:过点E作EFAB,则B=1(两直线平行,内错角相等)。ABCD(已知),又EFAB(已作),EFCD(平行于同一直线的两条直线互相平行)。D=2(两直线平行,内错角相等)。又BED=1+2,BED=B+D(等量代换)。变式1:已知:如图6,ABCD,求证:BED=360-(B+D)。分析:此题与例1的区别在于E点的位置及结论。我们通

5、常所说的BED都是指小于平角的角,如果把BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。证明:过点E作EFAB,则B+1=180(两直线平行,同旁内角互补)。ABCD(已知),又EFAB(已作),EFCD(平行于同一直线的两条直线互相平行)。D+2=180(两直线平行,同旁内角互补)。B+1+D+2=180+180(等式的性质)。又BED=1+2,B+D+BED=360(等量代换)。BED=360-(B+D)(等式的性质)。变式2:已知:如图7,ABCD,求证:BED=D-B。分析:此题与例1的区别在于E点的位置不同,从而结论也不同。

6、模仿例1与变式1作辅助线的方法,可以解决此题。证明:过点E作EFAB,则FEB=B(两直线平行,内错角相等)。ABCD(已知),又EFAB(已作),EFCD(平行于同一直线的两条直线互相平行)。FED=D(两直线平行,内错角相等)。BED=FED-FEB,BED=D-B(等量代换)。变式3:已知:如图8,ABCD,求证:BED=B-D。分析:此题与变式2类似,只是B、D的大小发生了变化。证明:过点E作EFAB,则1+B=180(两直线平行,同旁内角互补)。ABCD(已知),又EFAB(已作),EFCD(平行于同一直线的两条直线互相平行)。FED+D=180(两直线平行,同旁内角互补)。1+2+

7、D=180。1+2+D-(1+B)=180-180(等式的性质)。2=B-D(等式的性质)。即BED=B-D。例2已知:如图9,ABCD,ABF=DCE。求证:BFE=FEC。证法一:过F点作FGAB,则ABF=1(两直线平行,内错角相等)。过E点作EHCD,则DCE=4(两直线平行,内错角相等)。FGAB(已作),ABCD(已知),FGCD(平行于同一直线的两条直线互相平行)。又EHCD(已知),FGEH(平行于同一直线的两条直线互相平行)。2=3(两直线平行,内错角相等)。1+2=3+4(等式的性质)即BFE=FEC。证法二:如图10,延长BF、DC相交于G点。ABCD(已知),1=ABF(两直线平行,内错角相等)。又ABF=DCE(已知),1=DCE(等量代换)。BGEC(同位角相等,两直线平行)。BFE=FEC(两直线平行,内错角相等)。如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。证法三:(如图12)连结BC。ABCD(已知),ABC=BCD(两直线平行,内错角相等)。又ABF=DCE(已知),ABC-ABF=BCD-DCE(等式的性质)。即FBC=BCE。BFEC(内错角相等,两直线平行)。BFE=FEC(两直线平行,内错角相等)。七、板书设计回顾与反思一、问题串1举例2两条直线相交3直线平行的条件4平行线的特征二、知识框图三、课堂练习

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服