ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:146KB ,
资源ID:7635816      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7635816.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(山东省枣庄市峄城区吴林街道中学八年级数学下册《第二章运用公式法》教案2 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

山东省枣庄市峄城区吴林街道中学八年级数学下册《第二章运用公式法》教案2 北师大版.doc

1、山东省枣庄市峄城区吴林街道中学八年级数学下册第二章,运用公式法教案2 北师大版教学目标:(1)使学生了解运用公式法分解因式的意义; (2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式教学重点与难点:重点:会用平方差公式进行因式分解;难点:使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式教法及学法指导:本节课教学模式主要采用“小组合作竞学”的教学模式.提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳,并且营造小组竞学的氛围.教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大

2、胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为学习的主人.教学过程:一、问题情境,引入新课1.填空: (1)(x+3)(x3) = ;(2)(4x+y)(4xy)= ;(3)(1+2x)(12x)= ;(4)(3m+2n)(3m2n)= ;2.根据上面式子填空:(1)9m24n2= ;(2)16x2y2= ;(3)x29= ;(4)14x2= 师:第二组从左向右的变形是分解因式吗?生:是分解因式.师:这种分解因式的方法你看明白了吗?生:是逆用了平方差公式.师:平方差公式即可用于整式乘法,也可用于分解因式.这节课我们一起学习运用公式法(平方差公式)分解因式.(由于学生对乘法公式中的平方

3、差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子与第二组式子之间的对应关系)设计意图:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力二、合作交流,探究新知师:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?生:a2b2=(a+b)(ab)左边是一个多项式,右边是整式的乘积.师:大家判断一下,第二个式子从左边到右边是否是因式分解?生:符合因式分解的定义,因此是因式分解.师:对,是利用平方差公式进行的因式分解.第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式.师:请大家

4、观察式子a2b2,找出它的特点.生:是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差.师:如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积.师:你们能再举出几个这样的例子吗?生:x216=(x)242=(x+4)(x4).生:a281=(a+9)(a9).设计意图:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征三、例题讲解,巩固公式1.把下列各式因式分解: (1)2516x2 (2)9a2解:(1)2516x2=52(4x)2=(5+4x)(54x);(2)9a2 b2=(3a)2(

5、b)2=(3a+b)(3ab).2.将下列各式因式分解:(1)9(xy)2(x+y)2 (2)2x38x 解:(1)9(m +n)2(mn)2=3(m +n)2(mn)2=3(m +n)+(mn)3(m +n)(mn)=(3 m +3n+ mn)(3 m +3nm +n)=(4 m +2n)(2 m +4n)=4(2 m +n)(m +2n)(2)2x38x=2x(x24)=2x(x+2)(x2)设计意图:(1)让学生理解在平方差公式a2b2=(a+b)(ab)中的a与b不仅可以表示单项式,也可以表示多项式,向学生渗透换元的思想方法;(2)使学生清楚地知道提公因式法是分解因式首先考虑的方法,再

6、考虑用平方差公式分解因式四、学以致用,知识反馈1、判断正误: (1)x2+y2=(x+y)(xy) ( ) (2)x2+y2=(x+y)(xy) ( ) (3)x2y2=(x+y)(xy) ( ) (4)x2y2=(x+y)(xy) ( )2、把下列各式因式分解: (1)4m2 (2)9m24n2 (3)a2b2m2 (4)(ma)2(nb)2 (5)16x481y4 (6)3x3y12xy3、如图,在一块边长为a的正方形纸片的四角,各剪去一个边长为b的正方形用a 与b表示剩余部分的面积,并求当a=3.6,b=0.8时的面积设计意图:通过学生的反馈练习,使教师能全面了解学生对平方差公式的特征是

7、否清楚,对平方差公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏五、课堂小结,反思提高师:从今天的课程中,你学到了哪些知识? 掌握了哪些方法?生:有公因式(包括负号)则先提取公因式;生:整式乘法的平方差公式与因式分解的平方差公式是互逆关系;生:平方差公式中的a与b既可以是单项式,又可以是多项式;设计意图:通过学生的回顾与反思,强化学生对整式乘法的平方差公式的与因式分解的平方差公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解六、达标检测,反馈矫正1.下列各式中,能用平方差公式分解因式的共有( )(1) (2) (3) (4)A1

8、个 B.2个 C.3个 D.4个 2.已知则= _,=_.3.利用分解因式计算=_. 4.分解因式: 5.n为整数,试说明的值一定能被12整除.七、作业布置A组:课本第56页习题24第2、3题B组:课本第56页习题24第1题板书设计:2.3.1运用公式法引例例1例2学生板演区教学反思逆向思维是一种启发智力的方式,它有悖于人们通常的习惯,而正是这一特点,使得许多靠正向思维不能或是难于解决的问题迎刃而解一些正向思维虽能解决的问题,在它的参与下,过程可以大大简化,效率可以成倍提高正思与反思就象分析的一对翅膀,不可或缺传统的课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神因此,培养学生的逆向思维能力,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性,提高学习效果、学习兴趣,及思维能力和整体素质

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服