ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:164KB ,
资源ID:7635617      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7635617.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(秋九年级数学上册 22.1 二次函数的图象和性质教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

秋九年级数学上册 22.1 二次函数的图象和性质教案 (新版)新人教版-(新版)新人教版初中九年级上册数学教案.doc

1、第二十二章二次函数22.1二次函数的图象和性质22.1.1二次函数教学目标1.通过对实际问题情境的分析,让学生经历二次函数概念的形成过程,学会用类比思想学习二次函数知识.2.掌握二次函数的概念.3.认识到二次函数来源于实际生活,感受到二次函数在实际生活中有着广泛的应用.教学重难点重点:二次函数的概念.难点:理解变量之间的对应关系.教学过程与方法知识点:二次函数的概念1.学生自主学习教材P28P29问题1、问题2(约5分钟)2.观察思考与归纳(约5分钟)(1)观察y=6x2、d=n2-n、y=20(1+x)2这三个函数,它们有什么共同点?(2)你觉得这样的函数可以叫做什么函数?(3)在学生思考回

2、答后,给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a0)的函数,叫做二次函数.其中,x是自变量,a、b、c分别是函数解析式的二次项系数、一次项系数和常数项.(4)师生一起讨论二次函数有哪几种特殊形式.3.巩固强化与交流(约5分钟)(1)教材P29练习第12题.(2)出示例1:下列函数中,哪些是二次函数?哪些不是?y=1-2x2y=(x-2)(x+3)-x2y=(a2+1)x2+bxy=+-1y=y=()2+2-1解:是二次函数;其余都不是二次函数.4.合作与探究(约5分钟)(1)你对二次函数概念的理解有了哪些新的认识?(2)出示例2:已知函数y=(a+1)+(a-2

3、)x.当a为何值时,此函数为二次函数?当a为何值时,此函数为一次函数?解:a=1.a=0或a=-1.5.课堂小结(约5分钟)(1)到目前为止,我们学习了哪些函数?这些函数之间有什么联系?(2)二次函数的一般表达式是怎样的?对a、b、c有什么条件限制?(3)谈谈你的收获和困惑.6.独立作业(10分钟)(1)必做题:习题22.1第1题.(2)选做题:习题22.1第2题.(3)备用题:当k为何值时,函数y=(k-1)+2kx-1为二次函数;为一次函数?22.1.2二次函数y=ax2的图象和性质教学目标1.会用描点法画出二次函数y=ax2的图象,掌握二次函数y=ax2的性质.2.经历探索二次函数y=a

4、x2的图象与性质的过程,能运用二次函数y=ax2的图象及性质解决简单的实际问题,掌握数形结合的数学思想方法.3.通过数学学习活动,体会数学与实际生活的联系,感受数学的实际意义,激发学习兴趣.教学重难点会画二次函数y=ax2的图象和理解相关概念是本节课的学习重点也是难点;对二次函数研究的途径和方法的体悟也是本节课的难点.教学过程与方法知识点一:函数y=ax2图象的画法1.情境导入(约3分钟)导语一:回忆一次函数的图象、反比例函数的图象特征,思考二次函数的图象又有何特征呢?导语二:展示(用课件或幻灯片)具有抛物线的实例图让大家欣赏,议一议这与二次函数有何联系,从而引入新课.导语三:用红色的乒乓球作

5、投篮动作,观察乒乓球的运动路线,思考其运动路线有何特征.怎样用数学规律来描述呢?2.自主学习(约10分钟)(1)认真阅读教材P29P30,并操作(填表与画图).(2)思考:利用描点法画函数图象有哪些步骤?在第一步“”时,自变量x的取值需要注意什么?你怎样体会关键词“列表”、“描点”、“连线”、“平滑”?3.交流体会(约5分钟)二次函数y=ax2的图象是什么?二次函数y=ax2+bx+c的图象叫什么?抛物线的对称轴、顶点坐标、最高点、最低点有什么含义?知识点二:y=ax2的图象与性质4.合作与探究(约10分钟)(1)画函数y=-x2,y=-x2,y=-2x2.(2)归纳与总结一般地,抛物线y=a

6、x2的对称轴是y轴,顶点是(0,0).当a0时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大.当a0,把抛物线y=ax2向上平移k个单位,可得y=ax2+k;当k0时,开口向上,对称轴是y轴,顶点(0,k),最小值为k.a0时,开口向下,对称轴是y轴,顶点(0,k),最大值为k.知识点二:y=ax2+k的性质3.合作与探究(5分钟)(1)抛物线y=ax2+k与y=ax2的图象的异同点是什么?(2)抛物线y=ax2+k与y=ax2的增减性又是怎样?4.课堂小结(5分钟)1.二次函数y=ax2+k的图象和性

7、质(包括开口方向、对称轴、顶点坐标).2.抛物线y=ax2+k与y=ax2之间的联系与区别(包括平移、开口、对称轴、顶点等).处理方法:可以让学生围绕这两个问题先小结,然后教师进行补充或强调.5.独立作业(15分钟)(1)必做题:P33练习.(2)选做题:习题22.1第5题(1).(3)备用题:二次函数y=ax2+k的图象经过点A(1,-3),B(-2,-6),求这个二次函数的解析式.解:该二次函数的解析式为:y=-x2-2.已知二次函数y=-2x2+3,当x取何值时,y随x的增大而增大;当x取何值时,y随x的增大而减小?解:当x0时,y随x的增大而减小.二次函数y=ax2+k(a,k为常数)

8、,当x取值x1、x2时(x1x2),函数值相等,则当x取x1+x2时,函数值为0.函数y=ax2-a与y=(a0)在同一平面直角坐标系中的图象可能为(A)第2课时二次函数y=a(x-h)2的图象和性质教学目标1.会用描点法画二次函数y=a(x-h)2的图象.2.理解抛物线y=a(x-h)2与y=ax2之间的位置关系.3.在图象的平移过程中,渗透变与不变的辩证思想.教学重难点重点:二次函数y=a(x-h)2的图象和性质.难点:把握抛物线y=ax2通过平移后得到y=a(x-h)2时平移的方向和距离.教学过程与方法1.师生互动,提出问题(3分钟)(1)抛物线y=-x2+3与y=-x2的位置有什么关系

9、?(2)抛物线y=-x2+3的开口方向、对称轴、顶点坐标分别是什么?2.探究新知(10分钟)知识点一:y=a(x-h)2的图象和性质(1)在同一坐标系中画出二次函数y=-x2、y=-(x+1)2、y=-(x-1)2的图象.列表时怎样取值才能使抛物线具有对称性?这三条抛物线的对称轴、顶点坐标分别是什么?这三条抛物线能否经过相互的平移得到?怎样平移?3.交流探究:教材P34P35(5分钟)4.归纳总结(5分钟)抛物线y=a(x-h)2与抛物线y=ax2的形状相同,只是位置不同,它可以由抛物线y=ax2平移得到:当h0时,向右平移h个单位,当h0,开口向上,当x=h时,函数y有最小值=0,在对称轴的

10、左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大.(2)a0,开口向下,当x=h时,函数y有最大值=0,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.6.课堂练习(3分钟)(1)抛物线y=2(x+1)2可以由抛物线y=2x2向左平移1个单位得到.(2)抛物线y=-(x-4)2可以由抛物线y=-x2向右平移4个单位得到.(3)已知二次函数y=-(x-2)2,说出函数图象的对称轴和顶点及最值、增减性.解:二次函数y=-(x-2)2的对称轴为x=2,顶点为(2,0),有最大值0.当x0时,y随x的增大而减小.7.课堂小结(3分钟)(1)抛物线y=a(x-h)2与

11、y=ax2的关系.(2)抛物线y=a(x-h)2的对称轴、顶点.(3)平移规律:“左加右减”.(4)你还有哪些困惑和收获?8.独立作业(11分钟)(1)必做题:习题22.1第5题(2).(2)备用题:已知抛物线y=a(x+h)2的顶点是(-3,0),它是由抛物线y=-4x2平移得到的,则a=-4,h=3.把抛物线y=(x+1)2向右平移4个单位后得到抛物线y=(x-3)2.把抛物线y=x2+mx+n向左平移4个单位,得到抛物线y=(x-1)2,则m=-10,n=25.第3课时二次函数y=a(x-h)2+k的图象和性质教学目标1.会用描点法画出二次函数y=a(x-h)2+k(a、h、k是常数,a

12、0)的图象,掌握抛物线y=a(x-h)2+k与y=ax2的图象之间的关系,熟练掌握函数y=a(x-h)2+k的有关性质,并能用函数y=a(x-h)2+k的性质解决一些实际问题.2.经历探索y=a(x-h)2+k的图象及性质的过程,体验y=a(x-h)2+k与y=ax2、y=ax2+k、y=a(x-h)2之间的转化过程,深刻理解数学建模思想及数形结合的思想方法.3.通过观察函数的图象,归纳函数的性质等活动,感受学习数学的价值.教学重难点重点:二次函数y=a(x+h)2+k的性质.难点:教材P36例4的解答需要选取合适的坐标系,有一定的难度,是本节教学的难点.教学过程与方法1.回顾与思考(3分钟)

13、我们已经学习了形如y=ax2,y=ax2+k,y=a(x-h)2的函数,知道了它们可以经过互相平移得到.二次函数y=a(x-h)2+k又是一条怎样的抛物线呢?它与这三条抛物线之间有什么关系?知识点一:y=a(x-h)2+k的图象和性质2.合作与探究:教材P35例3(15分钟)(1)在同一坐标系内,画出二次函数y=-x2,y=-x2-1,y=-(x+1)2-1的图象.处理方法:师生一起完成列表,再由学生画出图象,如图.(2)指出y=-(x+1)2-1的开口方向、对称轴、顶点坐标、最值、增减性.(3)y=-(x+1)2-1可以由y=-x2怎样平移而得到?(4)归纳:y=a(x-h)2+k的图象和性

14、质及由y=ax2平移得到函数图象的规律.知识点二:y=a(x-h)2+k的实际运用3.解决问题,交流思想(16分钟)(1)读懂教材P36例4题意.(2)怎样建立平面直角坐标系?(3)怎样才能与二次函数联系起来?4.课堂练习:教材P37练习(3分钟)5.课堂小结(4分钟)(1)本节课我们学习了哪些内容?引导学生从以下几个方面去回顾:二次函数y=a(x-h)2+k的性质;抛物线y=a(x-h)2+k与y=ax2的平移关系;选取坐标系的方法.(2)谈一谈你的收获或困惑.6.独立作业(10分钟)(1)必做题:习题22.1第5题(3),第7题(1).(2)备用题:已知y=a(x-h)2+k是由抛物线y=

15、-x2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.求出a、h、k的值;在同一坐标系中,画出y=a(x-h)2+k与y=-x2的图象;观察y=a(x-h)2+k的图象,当x取何值时,y随x的增大而增大;当x取何值时,y随x的增大而减小,并求出函数的最值;观察y=a(x-h)2+k的图象,你能说出对于一切x的值,函数y的取值范围吗?解:a=-,h=1,k=2图略当x1时,y随x的增大而减小;当x=1时,函数有最大值2对于一切x的值y2.22.1.4二次函数y=ax2+bx+c(a0)的图象和性质第1课时二次函数y=ax2+bx+c(a0)的图象和性质教学目标1.会用描点法画二次函数y

16、=ax2+bx+c(a0)的图象;会用配方法将二次函数y=ax2+bx+c的解析式写成y=a(x-h)2+k的形式;通过图象能熟练地掌握二次函数y=ax2+bx+c的性质.2.经历探索y=ax2+bx+c与y=a(x-h)2+k的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想.3.通过合作交流,激发学习数学的兴趣,感受数学的价值.教学重难点重点:用描点法画出二次函数的图象,并指出该图象的基本性质.难点:通过对二次函数y=ax2+bx+c上的一些点的分析得出关于a、b、c的不等式.教学过程与方法知识点:y=ax2+bx+c的图象和性

17、质1.提出问题(3分钟)你能作出y=x2-6x+21的图象吗?2.自主学习:教材P37P39(9分钟)3.交流方法(2分钟)4.归纳总结(4分钟)一般地,我们可以用配方法求抛物线y=ax2+bx+c(a0)的顶点与对称轴.y=ax2+bx+c=a(x+)2+,因此,抛物线y=ax2+bx+c的对称轴是x=-,顶点坐标是(-,).开口方向、最值、增减性怎样?5.课堂练习:P39练习(3分钟)6.课堂小结(5分钟)(1)求二次函数y=ax2+bx+c的对称轴和顶点坐标通常有几种方法?配方时应注意什么?公式是怎样的?(2)指出y=ax2+bx+c的开口方向、顶点坐标.7.独立作业(15分钟)(1)必

18、做题:习题22.1第6题(1)(3).(2)选做题:习题22.1第6题(2)(4).(3)备用题:用配方法将二次函数y=x2-6x+21化成y=a(x-h)2+k的形式.解:y=(x-3)2+12某学生推铅球,铅球飞行的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+x+,则铅球落地的水平距离为5m.第2课时用待定系数法求二次函数的解析式教学目标1.能用待定系数法列方程组求二次函数的解析式.2.经历探索由已知条件的特点,灵活选择二次函数三种形式的过程,明确正确选择二次函数设法能使计算简化和三种形式是可以互相转化的.3.通过亲自体验,感受学习数学的乐趣.教学重难点重点:用待定系数法求

19、二次函数的解析式.难点:灵活选择合适的表达式设法,使求解达到简便、快捷的效果.教学过程与方法1.回顾与思考(3分钟)(1)二次函数有哪些形式?y=ax2,y=ax2+c,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,y=a(x-x1)(x-x2)(2)要求二次函数的解析式,你打算怎么办?知识点:用待定系数法求二次函数的解析式2.出示例题,学会合作解决(20分钟)【例1】已知二次函数y=ax2+bx+c(a0)中自变量x和函数值y的部分对应值如下表:x-1-01y-2-2-0则该二次函数的解析式为y=x2+x-2.【例2】已知二次函数图象的顶点是(1,-3),且经过点M(2,

20、0),这个函数的解析式为 y=3x2-6x.【例3】已知二次函数的图象如图所示,此抛物线的解析式为y=-x2+2x+3.【例4】已知一抛物线与x轴的交点是A(-1,0),B(m,0),且经过第四象限的点C(1,n),而m+n=-1,mn=-12,此抛物线的解析式为y=x2-2x-3.3.学生交流、归纳(5分钟)求解二次函数的解析式所设置的表达式:(1)一般式:y=ax2+bx+c.(2)顶点式:y=a(x-h)2+k.(3)交点式(两根式):y=a(x-x1)(x-x2).(4)y=ax2,y=ax2+c,y=a(x-h)2等特殊形式.4.课堂练习(5分钟)根据下列条件,求二次函数解析式.(1

21、)抛物线经过(-1,11),(2,8)和(0,6)三点.(2)抛物线的顶点坐标为(3,-1),且经过点(2,3).(3)抛物线的对称轴为直线x=2,且经过点(1,4)和(5,0).(4)抛物线经过(-1,0),(3,0)和(0,2)三点.解:(1)y=2x2-3x+6(2)y=4(x-3)2-1(3)y=-(x-2)2+4(4)y=-(x+1)(x-3)5.质疑视导(2分钟)师生一起分析有哪些收获或困惑.6.拓展性练习(15分钟)(1)已知抛物线y=ax2+bx+c的顶点坐标为(3,-2),且与x轴两交点间的距离为4,则抛物线的解析式为y=(x-3)2-2.(2)老师出示了小黑板上的题后(如下框).已知抛物线y=ax2+bx+3与x轴交于(1,0),试添加一个条件,使它的对称轴为直线x=2.小华说:过点(3,0);小彬说:过点(4,3),小明说:a=1,小颖说:抛物线被x轴截得的线段长为2,你认为四个人的说法中,正确的有(D)A.1个B.2个C.3个D.4个

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服