ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:137.50KB ,
资源ID:7631824      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7631824.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(浙江省温州市瓯海区实验中学八年级数学下册 5.3《平行四边形的性质》教案(2).doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

浙江省温州市瓯海区实验中学八年级数学下册 5.3《平行四边形的性质》教案(2).doc

1、5、3平行四边形的性质(2)相关以往知识:_教学内容和方法:_个性化教学思路及改进建议:_【教学目标】一、知识和技能1、掌握平行四边形的性质定理“平行四边形的对角线互相平分”。2、通过尝试从不同角度寻求解决问题的方法,经历探索平行四边形性质的过程。3、会应用平行四边形的上述定理解决简单几何问题。二、过程与方法结合本节课内容和学生的实际水平,采用学生实验发现法为主的教学方法。在教学过程中,通过设置带有启发性和思考性的问题,创设问题情景,直接从生活实践的应用引入课题,而后提出问题,诱导学生思考,让学生自主探究平行四边形的性质,给学生提供体验主动学习和探索的过程和经历。三、情感、态度与价值观通过探索

2、平行四边形的性质,进一步发展学生的逻辑推理能力及条理的表达能力。【教学重点】平行四边形的性质定理“平行四边形的对角线互相平分”。【教学难点】例3比较复杂,并要求一题多解.【教学过程】一、概念复习,情景引入。画一个口ABCD,在这个图形中有那些线段相等?上这体现了平行四边形的哪些性质?怎样发现这些性质的?(通过回忆并再现旧知识的产生过程,让学生积累学习知识的方法,为新课做准备。)二、自主研究,探索新知。画出平行四边形ABCD的对角线AC和BD,它们交于点O。你还能得到图形有那些线段相等?在让AC与BD画好后,细心观察,鼓励学生应用多种方式探索平行四边形的性质,可用三角板量一量,也可采用其他的方法

3、。(初步尝试,体验产生悬念,造成认知冲突,激发学生探索的欲望。)三、交流归纳,获得新知。学生观察、讨论,并年进行小组交流。通过以上活动,你能得到哪些结论?并由各小组派学生表述看法。学生动手量,有的学生讨论如何进行折叠,动脑思考,议论,有的学生在思考如何证明OA=OC,OB=OD,有的学生讨论找全等三角形,最后得到:OA=OC,OB=OD。_ _在学生得到OA=OC,OB=OD的基础上,概括出平行四边形的对角线的性质(若学生不能进行很好的叙述,可提示学生采用仿照性质定理1的方法进行叙述):平行四边形的对角线互相平分。已知:如上图,在口ABCD中,对角线AC,BD交于点O。求证:OA=OC,OB=

4、OD。证明:在口ABCD中,ADBC(平行四边形的定义)1=2, 3=4(两直线平行,内错角相等)。又AD=BC(平行四边形的对边相等)。 AODCOB(ASA)。OA=OC,OB=OD(全等三角形的对应边相等)。四、学以致用,形成技能1、学生尝试:课本例2。已知:如图,口ABCD的对角线AC,BD交于点O。过点O作直线EF,分别交AB,CD于点E,F。求证:OE=OF。开展讨论。发现DOF与BOE,COF与AOE可能全等。点拨:欲证OE=OF,需证明哪两个三角形全等?在发现的两对三角形中先找角等,再找边等。在本题证明完后,教师结合图形的适当变换对学生进行变式训练(主要结合下面的图形),而且在

5、学生的解答中主要是思路的总结,帮助学生总结出该类题目解答的要求是:利用平行四边形的对边的性质;利用平行四边形对角线的性质;寻找到合适的全等三角形来证明线段相等。2、例3、如图,在口ABCD中对角线AC,BD交于点E,ACBC,AC=4,AB=5,求BD的长?(请说说你的解题思路,)3、变式训练:(1)已知口ABCD中,AEBD,AFBD,垂足为E、F,求证:EB=DF_ _证明:AEBD,CFBD,AEB=90,CFD=90AEB=CFD,又四边形ABCD是平行四边形AB=CD,ABE=CDFABECDF。BE=DF(2)已知:如图,ABCD的对角线AC与BD相交于点O,E、F分别为OA,OC

6、的中点。求证:OBEODF。(3)已知如下图,在ABCD中,AC与BD相交于点O,点E、F在AC上,且BEDF。求证:BE=DF。证明:BEDF BEO=DFO( )四边形ABCD是平行四边形 OB=OD( )又BOE=DOF BOEDOF( ) BE=DF( )4、已知:如图,在ABC中,D,E分别是AB,AC上的点,1=2。求证:B=ADE。五、构建新知、培养能力:1、学生复述平行四边形的性质。 方式一、结合平行四边形的定义和三个性质进行叙述:方式二、将平行四边形的相关元素采用边、角、对角线的思路加以整理。_瞬间灵感或困惑:_3、让学生谈谈通过本节课的学习说一句自己最想说的话。教师有针对性的对各个层面的学生给予激励评价,特别对于平时表现不是很好的学生以及学习兴趣不高的学生这节课的表现给予肯定,激发他们的上进心和自信心。自我小结,明确这节课的目标,实现自我反馈,从而构建起自己的知识经验,形成自己的见解。六、作业布置,巩固深化板书设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服