ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:115KB ,
资源ID:7627316      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7627316.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(秋九年级数学上册 2.5 一元二次方程的应用教案2 (新版)湘教版-(新版)湘教版初中九年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

秋九年级数学上册 2.5 一元二次方程的应用教案2 (新版)湘教版-(新版)湘教版初中九年级上册数学教案.doc

1、一元二次方程的应用 教学目标 【知识与技能】 会建立一元二次方程的模型解决实际问题,并能根据具体问题的实际意义,对方程解的合理性作出解释. 【过程与方法】 进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力,培养学生用数学的意识. 【情感态度】 让学生进一步感受一元二次方程的应用价值,提高学生的数学应用意识. 【教学重点】 应用一元二次方程解决实际问题. 【教学难点】 从实际问题中建立一元二次方程的模型. 教学过程 一、情景导入,初步认知 复习列方程解应用题的一般步骤: (1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们之

2、间的关系; (2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x; (3)列方程:根据题中已知量和未知量之间的关系列出方程; (4)解方程:求出所给方程的解; (5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问题有意义; (6)作答:根据题意,选择合理的答案. 2.说一说,矩形的面积与它的两邻边长有什么关系? 【教学说明】复习相关知识,为本节课的学习作准备. 二、思考探究,获取新知 1.思考:如图,在一长为40cm,宽为28cm的矩形铁皮的四角截去四个全等的小正方形后,折成一个无盖的长方体盒子,若已知长方体盒子的底面积为3

3、64平方厘米,求截去的四个小正方形的边长. (1)引导学生审题,弄清已知数、未知数以及它们之间的关系; (2)确定本题的等量关系是:盒子的底面积=盒子的底面长×盒子的底面宽; (3)引导学生根据题意设未知数; (4)引导学生根据等量关系列方程; (5)引导学生求出所列方程的解; (6)检验所求方程的解合理性; (7)根据题意作答. 【教学说明】设未知数和作答时都不要漏写单位,多项式时要加括号再写单位. 2.如图,一长为32m,宽为20m的矩形地面上修建有同样宽的道路(图中阴影部分),余下部分进行了绿化,若已知绿化面积为540m2,求道路的宽. 分析:本题考查了一元二

4、次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案.还要注意根据题意考虑根的合理性,从而确定根的取舍.本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)米2,进而即可列出方程,求出答案. 解:设道路宽为x米 (32-x)(20-x)=540 解得:x1=2,x2=50(不合题意,舍去) ∴x=2 答:设道路宽为2米 3.如图所示,在△ABC中,∠C=90°,AC=6cm.BC=8cm,点P沿AC边从点A向终点C以1cm/s的速度移动,同时点Q沿CB边

5、从C向终点B以2cm/s的速度移动,且当其中一点达到终点时,另一点也随之停止移动,问点P、Q出发几秒后,可使△PCQ的面积为9cm2? 解:设xs后,可使△PCQ的面积为9cm2. 由题意得,AP=xcm,PC=(6-x)cm,CQ=2xcm则1/2·(6-x)·2x=9. 整理,得x2-6x+9=0,解得x1=x2=3. 所以P、Q同时出发,3s后可使△PCQ的面积为9cm2. 【教学说明】使学生感受、明白在几何图形中利用一元二次方程解决实际问题的过程与方法. 三、运用新知,深化理解 1.如图,某中学为方便师生活动,准备在长30m,宽20m的矩形草坪上修两横两纵四条小路,横

6、纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,若横路宽为3xcm,则可列方程为. 分析:若设小路的横路宽为3xm,则纵路宽为2xm,我们利用“图形经过移动,它的面积大小不会改变”的道理,把纵、横四条路移动一下(目的是求出路面的宽,至于实际施工,仍可按原图的位置修路),则余下的草坪面积可用含x的代数式表示为(30-4x)(20-6x)m2,又由题意可知余下草坪的面积为原草坪面积的四分之三,可列方程. 则可列方程:(30-4x)(20-6x)=3/4×30×20 【答案】 (30-4x)(20-6x)=3/4×30×20 2.在一幅长80cm,宽50cm的矩形风景

7、画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是( ) A.x2+130x-1400=0 B.x2+65x-350=0 C.x2-130x-1400=0 D.x2-65x-350=0 【答案】 B 3.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地. (1)怎样围才能使矩形场地的面积为750m2? (2)能否使所围矩形场地的面积为810m2,为什么? 解:(1)设所围矩形ABCD的长AB为x米,则宽AD为12(80-x)米. 依题意,得x·1/2(80-x

8、750. 即,x2-80x+1500=0, 解此方程,得x1=30,x2=50. ∵墙的长度不超过45m,∴x2=50不合题意,应舍去. 当x=30时,1/2(80-x)=1/2×(80-30)=25, 所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2. (2)不能. 因为由x·1/2(80-x)=810得x2-80x+1620=0. 又∵b2-4ac=(-80)2-4×1×1620=-80<0, ∴上述方程没有实数根. 因此,不能使所围矩形场地的面积为810m2. 4.如图①,在一幅矩形地毯的四周镶有宽度相同的边.如图②,地毯中央的矩形图案长6

9、米、宽3米,整个地毯的面积是40平方米.求花边的宽. 分析:本题可根据地毯的面积为40平方米来列方程,其等量关系式可表示为: (矩形图案的长+两个花边的宽)×(矩形图案的宽+两个花边的宽)=地毯的面积. 解:设花边的宽为x米, 根据题意得(2x+6)(2x+3)=40, 解得x1=1,x2=-11/2, x2=-11/2不合题意,舍去. 答:花边的宽为1米. 5.我校原有一块正方形空地,后来在这块空地上划出部分区域栽种花草(如图),原空地一边减少了1m,另一边减少了2m,使剩余的空地面积为12m2,求原正方形的边长. 分析:本题可设原正方形的边长为xm,则剩余的空地长

10、为(x-1)m,宽为(x-2)m.根据长方形的面积公式方程可列出,进而可求出原正方形的边长. 解:设原正方形的边长为xm,依题意有 (x-1)(x-2)=12 整理,得x2-3x-10=0. ∴(x-5)(x+2)=0, ∴x1=5,x2=-2(不合题意,舍去) 答:原正方形的边长5m. 6.小明家有一块长8m,宽6m的矩形空地,现准备在该空地上建造一个十字花园(图中阴影部分),并使花园面积为空地面积的一半,小明设计了如图的方案,求图中的x值. 解:据题意,得(8-x)(6-x)=1/2×8×6. 解得x1=12,x2=2. x1不合题意,舍去. ∴x=2. 【教学

11、说明】进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途. 四、师生互动、课堂小结 先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充. 课后作业 布置作业:教材“习题2.5”中第3、4、7题. 教学反思 本节课以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题.这类注重联系实际考查学生数学应用能力的问题,体现时代性,并且结合社会热点、焦点问题,引导学生关注国家、人类和世界的命运.既有强烈的德育功能,又可以让学生从数学的角度分析社会现象,体会数学在现实生活中的作用.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服