ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:206.50KB ,
资源ID:7625024      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7625024.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(秋八年级数学上册 11.1 平面内点的坐标教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

秋八年级数学上册 11.1 平面内点的坐标教案 (新版)沪科版-(新版)沪科版初中八年级上册数学教案.doc

1、11.1 平面内点的坐标 第1课时 平面直角坐标系 1.通过实际问题抽象出平面直角坐标系及其相关概念,使学生认识平面直角坐标系的原点、横轴和纵轴等,会由坐标描点,由点写出坐标;让学生体会到平面上的点与有序实数对之间的对应关系. 2.经历画平面直角坐标系,由点写出坐标和由坐标描点的过程,进一步渗透数形结合的数学思想. 3.培养学生自主探究与合作交流的学习习惯. 重点 正确认识平面直角坐标系,会准确地由点写出坐标,由坐标描点. 难点 各象限内坐标的符号及各坐标轴上点坐标的特点,平面上的点与有序实数对之间的对应关系. 一、创设情境,导入新课 1.回顾

2、一下数轴的概念,及实数与数轴有怎样的关系?(学生回答) 2.情境:(多媒体显示) 如图所示,请指出数轴上A,B两点所表示的数;直线表示一条笔直公路,向东为正方向,原点为学校位置,A,B是位于公路旁两学生家的位置,你能说出它们的位置吗?这说明了什么? 引申:确定一个点在直线上的位置,只需要一个数据,这个实数可称为点在数轴上的坐标.怎样确定平面上一个点的位置呢? 二、合作交流,探究新知 观察、交流、思考,回答教材P2的问题.(学生活动,教师指导) 思考:1.确定平面上一点的位置需要什么条件? 2.既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面

3、上任一点的位置呢? 教师在学生回答的基础上,边操作边讲解:为了确定平面上一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫x轴或横轴,取向右为正方向,垂直的数轴叫y轴或纵轴,取向上为正方向,两轴交点O为原点,这样就建立了平面直角坐标系,这个平面叫做坐标平面. 有了坐标平面,平面内的点就可以用一个有序实数对来表示. 引导观察:如图中点P可以这样表示:由P 向x轴作垂线,垂足M在x轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标是3,把横坐标写在纵坐标前

4、面记作(-2,3),即P点坐标(-2,3). 引导练习:写出点A,B,C的坐标. 学生相互交流,得出正确答案. (强调点的坐标的有序性和正确规范书写) 教师提问:已知平面内任意一点,可以写出它的坐标;反之,给出一点的坐标,你能在上图中描出吗? 试一试:D(1,3);E(-3,2);F(-4,-1). (注意引导学生进行逆向思维) 教师提问:请同学们想一想:原点O的坐标、x轴和y轴上的点坐标有什么特点? 学生发现:O点坐标(0,0),x轴上点的纵坐标为0,y轴上点的横坐标为0.试一试:描点:G(0,1);H(1,0)(注意区别). 教师讲解:两条坐标轴把坐标平面分成四个部分

5、右上部分叫第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限,坐标轴不属于任何象限. 学生活动:观察、认知上图中各象限内已描出各点的坐标特点:第一、二、三、四象限内的点的坐标符号分别是:(+,+)、(-,+)、(-,-)、(+,-). 三、运用新知,深化理解 例1 如图所示,点A,点B所在的位置是(  ) A.第二象限,y轴上 B.第四象限,y轴上 C.第二象限,x轴上 D.第四象限,x轴上 分析:根据点在平面直角坐标系中的位置来判定.点A在第四象限,点B在x轴正半轴上. 【归纳总结】两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.

6、例2 设点M(a,b)为平面直角坐标系内的点. (1)当a>0,b<0时,点M位于第几象限? (2)当ab>0时,点M位于第几象限? (3)当a为任意有理数,且b<0时,点M位于第几象限? 分析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)b<0,则点M在x轴下方. 解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上. 【归纳总结】熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点,

7、-,+)表示第二象限内的点,(-,-)表示第三象限内的点,(+,-)表示第四象限内的点. 例3 已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是(  ) A.(2,-1)      B.(1,-2) C.(-2,-1) D.(1,2) 分析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为-2;由点P到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2). 【归纳总结】本题的易错点有三处:

8、①混淆距离与坐标之间的区别;②不知道与“点P到x轴的距离”对应的是纵坐标,与“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只有已知距离而无附加条件,则点P的坐标有四个. 四、课堂练习,巩固提高 1.教材P5练习. 2.请同学们完成《探究在线·高效课堂》“随堂演练”内容. 五、反思小结,梳理新知 本节课我们学习了平面直角坐标系,要掌握以下三方面的知识内容: 1.能够正确画出直角坐标系. 2.能在直角坐标系中,根据坐标找出点,由点求出坐标.坐标平面内的点和有序实数对是一一对应的. 3.掌握象限上的点、x轴及y轴上点的坐标的特征: 第一象限:(+,

9、+);第二象限:(-,+); 第三象限:(-,-);第四象限:(+,-). x轴上的点的纵坐标为0,表示为(x,0), y轴上的点的横坐标为0,表示为(0,y). 六、布置作业 1.请同学们完成《探究在线·高效课堂》“课时作业”内容. 2.教材P8习题11.1第1,2题. 第2课时 简单图形的坐标表示 1.进一步巩固画平面直角坐标系,在给定的直角坐标系中,会根据坐标轴描出点的位置,由点的位置写出它的坐标. 2.能在方格纸上建立适当的直角坐标系,描述物体的位置. 重点 根据实际问题建立适当的坐标系,并能写出各点的坐标. 难点

10、 根据已知条件,建立适当的坐标系. 一、创设情境,导入新课 同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图(如图). 要研究这样的问题,首先来看一个正方形: 1.教师在黑板上画一个边长为4个单位长度的正方形,它的四个点坐标是多少呢? 和同学们一起讨论一下!能找到多少种方法? 2.如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标.用大家刚才找到的方法解决这个问题吧! 看看谁的方法更简单. 二、合作交流,探究新知 探究点一 建立适当的坐标系,用坐标表示物体的地理位

11、置 例1 如图所示是某校的部分平面示意图,请建立适当的坐标系用坐标表示各处的位置. 分析:先确定一点为坐标原点如图书馆,再确定x轴及y轴,最后用坐标表示各处位置. 解:以图书馆为坐标原点,以过图书馆东西方向的直线为x轴,南北方向的直线为y轴建立坐标系,则各处坐标为: 图书馆(0,0);教学楼(0,2);综合楼(-4,-1);桃李亭(-4,-4);芳草亭(1,-7). 探究点二 求坐标平面内图形的面积 例2 三角形ABC的三个顶点坐标分别为A(-2.5,-1)、B(1,3),C(4,-3),求三角形 ABC的面积. 解:如图,过A,C两点分别作x轴的垂线,与过B点的x轴的平

12、行线交于M,N两点,则四边形AMNC为梯形,且M(-2.5,3),N(4,3),所以MN=6.5,MB=3.5,NB=3,AM=4,CN=6,S三角形ABC=S梯形AMNC-S三角形AMB-S三角形BNC=×(4+6)×6.5-×4×3.5-×3×6=16.5. 三、运用新知,深化理解 例3 右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋的坐标______. 分析:由已知白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),可知y轴应在从左往右数的第四条格线上,且向上为正方向,x轴在从上往

13、下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋②的坐标是(1,-2). 【归纳总结】根据点的坐标确定平面直角坐标系时,先将点的坐标进行上下左右平移得到原点的坐标,过这个点的水平线为x轴、铅直线为y轴. 例4 长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标. 分析:以点(-2,-3)向右2个单位长度,向上3个单位长度为原点建立平面直角坐标系,然后画出长方形,再根据平面直角坐标系写出各点的坐标即可. 解:如图建立直角坐标系,∵长方形的一个顶点的坐标为A(-2,-3),∴长方形的另外三个顶点的

14、坐标分别为B(2,-3),C(2,3),D(-2,3). 【归纳总结】由已知条件确定坐标系原点的位置是解决本题的关键,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐标系确定以后,点的坐标也就确定了. 四、课堂练习,巩固提高 1.教材P7~8练习. 2.请同学们完成《探究在线·高效课堂》“随堂演练”内容. 五、反思小结,梳理新知 1.用坐标表示物体的地理位置,最关键的是确立坐标系,而确立坐标系的关键是确定原点,然后选择过原点的两条垂直的直线为x轴、y轴,一般选东西、南北方向.这个方法是不唯一的,为使点的坐标较简单些,一般应使尽可能多的点落在坐标轴上. 2.当题目中给出一些点的坐标时,确定坐标系就不能随意了,而是唯一的,由一个已知点的坐标就能确定坐标系. 六、布置作业 1.请同学们完成《探究在线·高效课堂》“课时作业”内容. 2.教材P8~9习题11.1第3~6题.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服