ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:16.50KB ,
资源ID:7617954      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7617954.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学下册 2.3 二次函数的应用教案 湘教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册 2.3 二次函数的应用教案 湘教版.doc

1、2.3 二次函数的应用一、教学目标:1、体验从实际问题中抽象出函数关系式的过程,进一步感受数学模型思想和数学应用价值。2、能够运用二次函数的性质和图象解决实际问题。二、教学重点、难点:用二次函数的性质和图象解决实际问题。三、教学过程:1、情境创设:如图,某喷灌设备的喷头B高出地面1.4m,如果喷出的抛物线形水流的水平距离x(m)与高度y(m)之间的关系式为二次函数ya(x4)23,求水流落地点D与喷头底产部A的距离。(精确到0.1m)2、探索活动(1)探索问题解决的总体思路与方案。(2)确定二次函数关系式。(3)根据点D的几何特征,确定其坐标。(4)给出符合实际意义的解释。3、例题精析:例1:

2、在一场足球比赛中,有一个球员从球门正前方10米处将球踢出球门,当球飞行的水平距离为6米时,球到达最高点,此时球高3米,已知球门廁2.44米,问该球员能否射中球门?例2:如图,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在圆形水面中心,OA1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线的路线落下,为使水流形状较为漂亮,要求设计成水流在与高OA距离为1m处达到距水面最大高度2.25m,(1)水池半径至少要多少米,才有使喷出的水流不致落在池外?(2)如果修水池每平方米造价为130元,问修这个水池至少要花多少钱?(取3.14,精确到元)4、课堂练习:

3、小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度(铅球脱手时高地面的高度)为2m,如果出手后铅球在空中飞行的水平距离x(m)与高度y(m)之间的关系为二次函数ya(x4)23,那么小明掷铅球的出手点与铅球落地点之间的水平距离是多少?(精确到0.1m)5、布置作业:教材P30习题6.4::4、5。二次函数的应用(3)一、学习目标:1、进一步体验应用函数模型解决实际问题的过程,感受数学的应用价值。2、能够从实际问题中抽象出相应的函数关系式,进一步提高分析问题、解决问题的能力。二、学习重点、难点:从实际问题中抽象出相应的函数关系式。三、教学过程:1、情境创设:一座抛物线拱桥梁在一条河流

4、上,这座拱桥下的水面离桥孔顶部3m时,水面宽6m,当水位上升1m时,水面宽为多少?(精确到0.1m)2、探索活动:(1)探寻问题解决方案。(2)建立直角坐标系,将抛物线形拱桥数学化。(3)根据直角坐标系中图象的特征,探求抛物线的函数关系式。(4)根据图象上点的位置变化,确定点的坐标的数量变化,得出水面宽。3、例题精析:如图,抛物线AMB是某战士在哨所里发射的信号弹的行进路线示意图,信号弹的高度y(m)与水平距离x(m)之间的关系是yx2x。求(1)信号弹发出后的最大高度。(精确到1m)(2)信号弹行进的水平距离。4、课堂练习:(1)某房地产公司在荒地ABCDE(如图)上划出一块长方形地面(不改变方向)建造一幢8层楼公寓,问如何设计才能使公寓占地面积最大?并求出最大面积?(精确到1m2)5、布置作业:

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服