ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:232.50KB ,
资源ID:7616083      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7616083.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学下册 3.7 切线长定理教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册 3.7 切线长定理教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc

1、课题:3.7切线长定理 教学目标:1. 通过作图、观图理解切线长的概念,体会切线与切线长的区别与联系.2.经历探索切线长定理的过程,发展学生合情推理和演绎推理的能力.3应用切线长定理进行相关的计算和证明.教学重、难点:重点:切线长定理的推导过程及运用.难点:综合运用切线长定理进行有关的证明和计算.课前准备:课件、实物投影仪、圆规、三角板、导学案.教学过程: 一、创设情境,引入新课活动内容:上节课我们认识了圆的切线,知道过O上任一点A都可以作一条切线,并且只有一条.那么过圆外一点可以画几条切线?它们之间又有什么关系呢?想知道答案就一起进入今天的课堂学习.1.根据条件画出图形已知O外一点P,过点P

2、作O的切线,可以画圆的 条切线?你有几种方法?处理方式:学生小组合作,尝试作图.师巡视指导,参与到学生的活动中.待多数小组完成后,选个别小组展示交流作法.师再播放课件小结作图方法.方法1:用三角尺.方法2:连结OP,以OP为直径作圆交O于A、B两点,作射线PA、PB,则PA、PB为O的切线,切点为A、B.最后,引导学生发现过圆外一点只能画2条切线.设计意图:由学生作图,体验如何过圆外一点画圆的切线的方法和条数,为下面的学习做好经验和事实铺垫.二、合作探究,感悟新知活动2:认识切线长如图1,是我们所画的图形,PA,PB是O的两条切线,A、B是切点,我们把线段PA,PB叫做点P到O的切线长 问题1

3、:切线长是如何定义的?问题2:观察图形,切线与切线长是一回事吗?它们有什么区别和联系?处理方式:问题1可以先让学生回答,如:圆外的点和切点的线段叫做切线长;过圆外一点做圆的切线,这个点和切点的线段叫做切线长等.此时,师生补充纠正共同得出的定义. (课件展示)切线长定义从圆外一点画圆的切线,这点和切点之间线段的长叫做这点到圆的切线长.问题2先由学生争论,师生再总结:切线和切线长是两个不同的概念,切线是一条与圆相切的直线,不能度量;切线长是切线上一条线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. (课件展示)设计意图:放手让学生给切线长下定义,可使学生更好地理解切线长的概念,体会切线

4、与切线长的区别与联系.活动3:探索切线长定理问题1:如图1,(课件展示)是轴对称图形吗?如果是,它的对称轴是什么?问题2:在这个图中你能找到相等的线段吗?说说你的理由?由此你得到什么猜想?问题3:如何证明你的猜想?处理方式:问题1学生直接判断.问题2当学生回答PA=PB时,师关注学生是怎么找到的?如:有的学生会利用图形的对称性解释;有的可能通过测量得到. 对学生的回答师给予鼓励.学生猜想: 过圆外一点所画的圆的两条切线长相等.(若学生提不出师及时引导.)问题3学生分组探究,写出证明过程.(个别组展示交流.)已知:如图2,PA、PB分别是O的切线,A、B 是切点.求证:PA=PB.证明:连接OA

5、,OB.PA、PB分别是O的切线,PAO=PBO=90.在RtAOP和RtBOP中,OA=OB,OP=OP. RtAOPRtBOP PA=PB至此,我们证明了猜想是正确的,得到切线长定理. (课件展示)切线长定理:过圆外一点所画的圆的两条切线长相等.符号语言:PA、PB切O于点A、B, PA=PB.师追加反思:切线长定理为说明线段相等提供了新的方法.师追问: 由RtAOPRtBOP我们还能得到哪些结论?处理方式:学生观察图形可直接回答,OPA=OPB,POA=P OB.因此,切线长定理可拓展为过圆外一点所画的圆的两条切线长相等,圆心和这一点的连线平分两条切线的夹角.设计意图:让学生经历观察猜想

6、-验证的数学探索过程,有助于学生理解切线长定理,更深层次的挖掘其内涵,为解题提供方便.三、例题解析,运用新知.活动4:应用切线长定理应用切线长定理可以解决那些问题呢?例1. 如图,四边形ABCD的四条边都与O相切,切点分别为E,F,G,H,由切线长定理你能发现哪些线段相等?处理方式:学生观察图形,直接回答.若学生有困难,师可以进行如下引导:分析: 由点A的切线可知 = . 由点B的切线可知 = . 由点C的切线可知 = . 由点D的切线可知 = . 师追问:将上面四个等式左右两边分别相加,你能得到什么结论?处理方式:由学生发现:AB+CD=A D+BC,进而得出结论:圆的外切四边形的两组对边的

7、和相等.例2. 已知如图,在RtABC的两条直角边AC=10,BC=24,O 是ABC 的内切圆,切点分别为D,E,F,求O 的半径.处理方式:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程的知识,是一道综合性较强的计算题因此,教师可组织学生小组讨论,寻求解题思路,并写出解题过程;师巡视指导,深入到学生的讨论中,适时提示学生添加辅助线解答.完成后, 学生代表展示交流解题方法,师同步播放课件.解法1:连接OD,OE,OF,则OD=OE=OF,设OD=r.在RtABC中,AC=10,BC=24, O分别于AB,BC,AC相切于点D,E,F,ODAB, OEBC , OFAC

8、 , BD= BE , AD=AF ,CE=CF.又C=90,四边形OECF为正方形.CE=CF=r. BE=24-r, AF=10-r.AB= BD+ AD= BE+ AF=24-r+10-r =34-2r而AB=26,34-2r=26r=4,O的半径为4.解法2:连接OA,OB,OC,OD,OE,OF,在RtABC中,AC=10,BC=24, O分别于AB,BC,AC相切于点D,E,F, ODAB, OEBC , OFAC , 设O的半径为r SABCSAOBSBOC SAOC 24X10= (26+24+10) r r=4,O的半径为4.师追问:在解决有关圆的切线长问题时,往往需要我们添

9、加辅助线构建基本图形.从上面的解题过程中你体会到那些添加辅助线的方法?引导学生发现:(1)分别连接圆心和切点. (2)连接圆心和圆外一点.设计意图:借助例题解析,引导学生领悟运用切线长定理解决问题的方法,以及常用的解题思路. 四、达标测试,检验新知.1.已知O的半径为3cm,点P和圆心O的距离为6cm,过点P两条画O的两条切线,这两条切线的切线长为 cm.2. 如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形ABCD的周长为_3.如图,AB、AC是O的切线,B、C为切点, A =50,点P是圆上异于B、C,且在上的动点,则BPC的度数是()A65B115C115或65D130

10、或65(1题) (2题) (3题)4.已知:如图PA,PB是O的切线,切点分别是A,B,C为O上一点,过C点作O的切线,交PA,PB于D,E点,已知PA=PB=5cm,求PDE的周长.(4题)处理方式:学生独立完成13题,个别学生回答,简要说明思路. 第4题,要求学生写出解题过程.师巡回辅导.设计意图:学生通过检测练习,加深对知识巩固,提高学生的解题能力.五、回顾反思,共同进步这节课你在知识方面有哪些收获?在学习方法上,你学会了什么?你还有什么疑惑?你想进一步探究的问题是什么?处理方式:给学生一定的时间进行思考,得出结论后,再进行集体交流和课件展示.设计意图:以“回顾反思” 的方式让学生总结本节课的收获,使学生养成梳理学习内容、思想、方法、思路形成知识体系的习惯.六、布置作业,课外巩固课本习题P96习题3.9 1, 2, 3,板书设计3.7切线长定理过圆外一点画圆的切线,这点和切点之间的线段长叫做这点到圆的切线长.如图,线段PA,PB叫做点P到O的切线长切线长定理:过圆外一点所画的圆的两条切线相等.符号语言:PA、PB切O于点A、B,PA=PB投影区学 生 活 动 区

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服