ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:40KB ,
资源ID:7612518      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7612518.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学整式教案北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学整式教案北师大版.doc

1、第3课 整式知识点代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。大纲要求1、 了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式的值;2、 理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;3、 掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;4、 能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x2+(a+b)x+ab)进行运算;5、 掌握整式的加

2、减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。考查重点1代数式的有关概念 (1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子单独的一个数 或者一个字母也是代数式 (2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值 求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值(3)代数式的分类2整式的有关概念 (1)单项式:只含有数与字母的积的代数式叫做单项式 对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。 (2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注

3、意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析(3)多项式的降幂排列与升幂排列 把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列 把个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列, 给出一个多项式,要会根据要求对它进行降幂排列或升幂排列 (4)同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷 要会判断给出的项是否同类项,知道同类项可以合并即 注意:其中的X可以代表单项 式中的字母部分,代表其他式子。3整式的运算 (1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减

4、号连接整式加减的一般步骤是: (i)如果遇到括号按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符 号,括号前是“一”号,把括号和它前面的“一”号去掉括号里各项都改变符号 (ii)合并同类项: 同类项的系数相加,所得的结果作为系数字母和字母的指数不变 (2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质: 多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加 多项式与多项式相乘,

5、先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加 遇到特殊形式的多项式乘法,还可以直接算: (3)整式的乘方 单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。 单项式的乘方要用到幂的乘方性质与积的乘方性质: 多项式的乘方只涉及 考查重点与常见题型1、 考查列代数式的能力。题型多为选择题,如:下列各题中,所列代数式错误的是( )(A)表示“比a与b的积的2倍小5的数”的代数式是2ab5 (B)表示“被5除商是a,余数是2的数”的代数式是5a+2(C)表示“a与b的平方差的倒数”的代数式是 (D)表示“数的一半与数的3倍的差”的代数

6、式是3b2、 考查整数指数幂的运算、零指数。题型多为选择题,在实数运算中也有出现,如:下列各式中,正确的是( )(A)a3+a3=a6 (B)(3a3)2=6a6 (C)a3a3=a6 (D)(a3)2=a6整式的运算,题型多样,常见的填空、选择、化简等都有。考查题型:1.下列各题中,所列代数式错误的是( )(A)表示“比a与b的积的2倍小5的数”的代数式是2ab5 (B)表示“被5除商是a,余数是2的数”的代数式是5a+2(C)表示“a与b的平方差的倒数”的代数式是 (D)表示“数的一半与数的3倍的差”的代数式是3b2.下列各式中,正确的是( )(A)a3+a3=a6 (B)(3a3)2=6

7、a6 (C)a3a3=a6 (D)(a3)2=a63.用代数式表示:(1)a的绝对值的相反数与b的和的倒数; (2)x平方与y的和的平方减去x平方与y的立方的差;4.的系数是 ,是 次单项式;5.多项式3x216x54x3是 次 项式,其中最高次项是 ,常数项是 ,三次项系数是 ,按x的降幂排列 ;6.如果3m7xny+7和-4m2-4yn2x是同类项,则x= ,y= ;这两个单项式的积是。7.下列运算结果正确的是( )2x3-x2=x x3(x5)2=x13 (-x)6(-x)3=x3 (0.1)-210-1=10(A) (B) (C) (D)考查训练:1、代数式a21,0,x+,m,,3b

8、中单项式是 ,多项式是 ,分式是 。2、是 次单项式,它的系数是 。3、多项式3yx216y2x54yx3是 次 项式,其中最高次项是 ,常数项是 ,三次项系数是 ,按x的降幂排列为 。4、已知梯形的上底为4a3b,下底为2a+b,高为3a+b。试用含a,b的代数式表示出梯形的面积,并求出当a=5,b=3时梯形的面积。5、下列计算中错误的是( )(A)(a3b)2(ab2)3=-a9b8 (B) (a2b3)3(ab2)3=a3b3(C)(a3)2(b2)3=a6b6 (D)(a3)2(b2)33=a18b186、计算:33(34)(23)27已知代数式3226的值为8,求代数式21的值8设2

9、,求的值。7、利用公式计算:(1) (a2b)( ba2) (2) (a)2 (a2+)2(a+)2(3)(x+yz)(xy+z)(x+y+z)(xyz) (4)(x2+6x+9) (x+3)(x2-3x+9)(5)(a24)(a22a+4)(a2+2a+4) (6)10199 解题指导: 1、代数式是( )(A)整式 (B)分式 (C)单项式 (D)无理式2、如果3x7-myn+3和4x14my2n是同类项,那么m,n的值是( )(A)m=3,n=2 (B) m=2,n=3 (C) m=2,n=3 (D) m=3,n=23、正确叙述代数式(2a-b2)的是()(A)与2的积减去平方与3的商(

10、B)与2的积减去的平方的差除以3(C)与2倍减去平方的差的 (D)的2倍减去平方4、用乘法公式计算:(1) (2a3b)2 (2) (a3b+2c)2 (3) (2yz)22y(z+2y)+z225、计算:(1)(c2b+3a)(2b+c3a) (2)(ab)(a+b)22ab(a2b2)6、用竖式计算: (54x3+5x2+2x4)(3+x22x)7、已知6x39x2+mx+n能被6x2x+4整除,求m,n的值,并写出被除式。8、已知4,3,求:3232;()2巩固提高1、 若一个多项式加上2x2x353x4得3x45x33,则这个多项式是 ;2、 若3xn(m1)x+1为三次二项式,则mn

11、2的值为 ;3、 用代数式表示,m,n两数的和除这两数的平方的差 ;用语言叙述代数式 ;4.若除式=x+2,商式=2x+1,余式=5,则被除式= ;5、当x=2时,ax3+bx7=5,则x=2时,ax3+bx7= ;2,3,则()23()16、如果(a+bx)2的结果中不含的x一次项,那么a,b必满足( )(A) a=b (B)a=0,b=0 (C)a=b (D)以上都不对7、a(bc)去括号正确的是( )(A) ab+c (B)a+bc (C)abc (D)a+b+c8、设P是关于x的五次多项式,Q是关于x的三次多项式,则( )(A)P+Q是关于的八次多项式 (B)P-Q是关于的二次多项式(

12、C)PQ是关于的八次多项式 (D)是关于的二次多项式9.下列计算中正确的是( )(A)xn+2xn+1=x2 (B)(xy)5xy3=(xy)2 (C)x10(x4x2)=x8 (D)(x4nx2n) x3n=x3n+210若(12)(212)53,则的值为()(A)1(B)2(C)3(D)311、计算:(1) (2ax)2(x4y3z3) (a5xy2) (2) (an+2+2an+1) (an1)(3) 5(m+n)(mn)2(m+n)23(mn)2 (4)(ab+cd)(abcd)(5)(xy)2(x2xy+y2)2 (6)15+2a9aa9(36a)(7)(a2cbc2)(ab+c)(a+bc) (8)(ab)(a+b)2(a+b)(a-b)2+2b(a2+b2)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服