ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:134.50KB ,
资源ID:7609872      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7609872.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(辽宁省丹东市九年级数学下册 第二章《二次函数 二次函数与一元二次方程(二)》教案 北师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

辽宁省丹东市九年级数学下册 第二章《二次函数 二次函数与一元二次方程(二)》教案 北师大版.doc

1、二次函数与一元二次方程(二)教学目标知识与技能1巩固理解二次函数图象与x轴交点的横坐标就是方程ax2+bx+c=0的根;2巩固理解一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c 与直线y=h(h是实数)图象交点的横坐标过程与方法1经历一元二次方程ax2+bx+c=0的根的近似值的探索得到的过程;2经历一元二次方程ax2+bx+c=h的根的近似值的探索得到的过程。情感态度与价值观1通过对一元二次方程根的近似值探索过程,进一步体会二次函数与方程之间的联系第一环节 仔细观察、大胆联想(5分钟)问题:函数y = ax2 +bx +c的图象如下图所示,x= 为该图象的对称轴,根据图

2、象 信息你能得到关于系数a,b,c的一些 什么结论? 分析点拨: a0 -1c0 b2-4ac0; x= , 2a=-3b; 由,(4)得b0 由,得 abc0; 考虑x = 1时y0,所以有a+b+c0 又x = -1 时 y0,所以有a-b+c0; 考虑顶点的纵坐标,有0c-1。 -11-1第二环节 课前热身、耐心填一填(5分钟)1. 抛物线y=ax2bxc经过点(0,0)与(12,0),最高点纵坐标是3,求这条抛物线的表达式_ . 2若a0,b0,c0,0,那么抛物线y=ax2bxc经过象限3. 在平原上,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的关系满足y=x210

3、x(1)经过_时间,炮弹达到它的最高点?最高点的高度是_?(2)经过_秒,炮弹落在地上爆炸?4.一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c的图象抛物线与直线_交点的_坐标。5.一元二次方程ax2+bx+c=h的根就是二次函数y=ax2+bx+c的图象抛物线与直线_交点的_坐标 .第三环节 用心想一想,马到功成(10分钟)你能利用二次函数的图象估计一元二次方程x2+2x-10=0的根吗?分析解答:(1) 用描点法作二次函数y=x2+2x-10的图象(2) 观察估计二次函数y=x2+2x-10的图象与x轴的交点的横坐标;由图象可知:图象与x轴有两个交点,其横坐标一个在-5

4、与-4之间,另一个在2与3之间,分别约为-4.3和2.3.(3) 确定方程x2+2x-10=0的解;由此可知,方程x2+2x-10=0的近似根为:x1-4.3,x22.3第四环节 教材题变形,拓展延伸(5分钟)利用二次函数的图象求一元二次方程x2+2x-10=3的近似根.分析解答:(1) 用描点法作二次函数y=x2+2x-10的图象(2) 作直线y=3;(3) 观察估计抛物线y=x2+2x-10和直线y=3的交点的横坐标;由图象可知,它们有两个交点,其横坐标一个在-5与-4之间,另一个在2与3之间,分别约为-4.7和2.7.(4) 确定方程x2+2x-10=3的解;由此可知,方程x2+2x-1

5、0=3的近似根为:x1-4.7,x22.7第五环节 大胆尝试、练一练(10分钟)问题1:利用二次函数的图象求一元二次方程-2x2+4x+1=0的近似根分析解答:1)用描点法作二次函数y=-2x2+4x+1的图象;2)观察估计二次函数y=-2x2+4x+1的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个在-1与0之间,另一个在2与3之间,分别约为-0.2和2.2(3) 确定方程x2+4x+1=0的解;由此可知,方程x2+4x+1=0的近似根为:x1-0.2, x22.2问题2:利用二次函数的图象求一元二次方程3x2-x=1的近似根.分析解答:(1) 原方程可变形为3x2

6、-x-1=0;(2) 用描点法作二次函数y=3x2-x-1的图象(3) 观察估计抛物线y=3x2-x-1和x轴的交点的横坐标;图象可知,图象与x轴有两个交点,其横坐标一个在-1与0之间,另一个在0与1之间,分别约为-0.4和0.8.(4) 可估计x1-0.4, x20.8第六环节 课堂小结(5分钟)师生互相交流本节课的学习心得,感受及收获。鼓励学生结合本节课的学习谈自己的收获与感想(学生畅所欲言,教师给予鼓励)包括二次函数图象的制作,函数图象性质的总结归纳。第五环节 布置作业 本节习题.8.二次函数与一元二次方(二)问题:函数y = ax2 +bx +c的图象如下图所示程利用二次函数的图象估计一元二次方程x2+2x-10=0的根吗?板书设计四、教学反思

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服