ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:643.87KB ,
资源ID:7593875      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7593875.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(《有理数》全章复习与巩固(提高)知识讲解.doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

《有理数》全章复习与巩固(提高)知识讲解.doc

1、 《有理数》全章复习与巩固(提高)知识讲解 【学习目标】 1.理解正负数的意义,掌握有理数的概念. 2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算. 3.学会借助数轴来理解绝对值、有理数比较大小等相关知识. 4. 理解科学记数法及近似数的相关概念并能灵活应用; 5. 体会数学知识中体现的一些数学思想. 【知识网络】 【要点梳理】 要点一、有理数的相关概念 1.有理数的分类: (1)按定义分类: (2)按性质分类: 要点诠释

2、1)用正数、负数表示相反意义的量; (2)有理数“0”的作用: 作用 举例 表示数的性质 0是自然数、是有理数 表示没有 3个苹果用+3表示,没有苹果用0表示 表示某种状态 表示冰点 表示正数与负数的界点 0非正非负,是一个中性数 2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如. (2)在数轴上,右边的点所对应的数总比左边的点所对应的数大. 3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0. 要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,

3、并且到原点的距离相等,这两点是关于原点对称的. (2)求任意一个数的相反数,只要在这个数的前面添上“”号即可. (3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值: (1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作. (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离. 要点二、有理数的运算 1 .法则: (1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减

4、去较小的绝对值.③一个数同0相加,仍得这个数. (2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) . (3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0. (4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.   (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要

5、点诠释:“奇负偶正”口诀的应用: (1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3, -[+(-3)]=3. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , . 2.运算律: (1)交换律: ① 加法交换律:a+b=b+a; ②乘法交换律:ab=ba; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c

6、); ②乘法结合律:(ab)c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较 比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法. 要点四、科学记数法、近似数及精确度 1.科学记数法:把一个大于10的数表示成的形式(其中,是正整数),此种记法叫做科学记数法.例如:200 000=. 2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数. 要点诠

7、释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入. 3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释: (1)精确度是指近似数与准确数的接近程度. (2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到米,说明结果与实际数相差不超过米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】 类型一、有理数相关概念 1.已知x与y互为相反数,m与n互为倒数,|x+y |+(a-1)2=0,求a2-(x+

8、y+mn)a+(x+y)2009+(-mn)2010的值. 【思路点拨】(1)若有理数x与y互为相反数,则x+y=0,反过来也成立. (2)若有理数m与n互为倒数,则mn=1,反过来也成立. 【答案与解析】 解:因为x与y互为相反数,m与n互为倒数,(a-1)2≥0, 所以x+y=0,mn=1,a=1, 所以a2-(x+y+mn)a+(x+y)2009+(-mn)2010 =a2-(0+1)a+02009+(-1)2010 =a2-a+1. ∵a=1,∴原式=12-1+1=1 【总结升华】要全面正确地理解倒数,

9、绝对值,相反数等概念. 举一反三: 【高清课堂:有理数的复习与提高 357129 复习例题2】 【变式1】选择题 (1)已知四种说法: ①|a|=a时,a>0;|a|=-a时, a<0. ②|a|就是a与-a中较大的数. ③|a|就是数轴上a到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A.1 B.2 C.3 D.4 (2)有四个说法: ①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是(

10、 ) A.①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( ) A.ab<0 B.ab>0 C.a>0且b<0 D.a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A.120 B.-15 C.0 D.-120 (5)下列各对算式中,结果相等的是( ) A.-a6与(-a)6 B.-a3与|-a|3 C.[(-a)2]3与(-a3)2 D.(ab)3

11、与ab3 【答案】(1)C;(2)C;(3)A;(4)D;(5)C 【变式2】(2015•呼伦贝尔)中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为   . 【答案】9.6×106. 2. 在下列两数之间填上适当的不等号: ________. 【思路点拨】在a、b均为正数的条件下,根据“,,分别得到a>b,a=b,a<b”来比较两数的大小. 【答案】 > 【解析】法一:作差法:() =, ∴. 法二:作商法:由于,所以. 再根据两个负数,绝

12、对值大的反而小,得到:. 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用. 举一反三: 【变式】在下列两数之间填上适当的不等号. _________. 【答案】> (提示:倒数法较简便) 类型二、有理数的运算 【高清课堂:有理数专题复习 357133 有理数的混合运算】 3.(1) (2) (4) (5) 【答案与解析】 解:(1)原式 (2)原式 (3)原式 (4)原式 (5) 【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应

13、用乘法分配律:a(b+c)=ab+ac;逆向应用分配律:ab+ac=a(b+c)等. 举一反三: 【变式】 (1) (2) 【答案】 解:(1) (2) 4. 先观察下列各式:;; ;…;,根据以上观察,计算: …的值. 【答案与解析】 解:原式 【总结升华】根据题中提供的拆项方法把每一项拆成的形式,然后再进行计算. 举一反三: 【高清课堂:有理数的复习与提高 例2】 【变式】用简单方法计算: 【答案】 解:原式= 类型三、数学思想在本章中的应用  5.(2014•

14、香洲区校级二模)(1)阅读下面材料: 点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|. 当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|; 当A,B两点都不在原点时, ①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|; ②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|; ③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|; 综上,数轴上A

15、B两点之间的距离|AB|=|a﹣b|. (2)回答下列问题: ①数轴上表示2和5的两点之间的距离是   ,数轴上表示﹣2和﹣5的两点之间的距离是   ,数轴上表示1和﹣3的两点之间的距离是   ; ②数轴上表示x和﹣1的两点A和B之间的距离是   ,如果|AB|=2,那么x为   ; ③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是   . ④解方程|x+1|+|x﹣2|=5. 【答案与解析】 解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3; 数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3; 数轴上表示1和﹣3的

16、两点之间的距离是|1﹣(﹣3)|=4. ②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3. ③当代数式|x+1|十|x﹣2|取最小值时, ∴x+1≥0,x﹣2≤0, ∴﹣1≤x≤2. ④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2; 当﹣1<x≤2时,3≠5,不成立; 当x>2时,x+1+x﹣2=5,解得x=3. 故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2. 【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点. 类型四、规律探索 6.下面两个多位数

17、1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ). A.495 B.497 C.501 D.503 【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2

18、的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和. 【答案】A 【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来. 举一反三: 【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( ). A. B. C. D. 【答案】B提示:观察发现:分子总是1,第n行的第一个数的分母就是n,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的倍.根据图表的规律,则第10行从左边数第3个位置上的数是.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服