ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:111.50KB ,
资源ID:7417971      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7417971.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(江苏省丹阳市八中九年级数学 5.7正多边形和圆教案 人教新课标版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省丹阳市八中九年级数学 5.7正多边形和圆教案 人教新课标版.doc

1、江苏省丹阳市八中九年级数学 5.7正多边形和圆教案 人教新课标版教学目标:1了解正多边形的概念、正多边形和圆的关系,会判定一个正多边形是中心对称图形还是轴对称图形2会通过等分圆心角的方法等分圆周,画出所需的正多边形3能够用直尺和圆规作图,作出一些特殊的正多边形.教学重点:理解、掌握相关概念. 教学难点:灵活运用解题.教学过程一、创设情境观察下列图形,你能说出这些图形的特征吗?二、探究学习1探索正多边形的概念(1)观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念:各边相等、各角也相等的多边形叫做正多边形。(2)概念理解:请同学们举例,自己在日常生活中见过的正多边形(正三角形、正方形、

2、正六边形,.)矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?(3)正n边形的每个内角等于多少度?每个外角呢?2探索正多边形与圆的关系 (1)你能借助量角器,利用圆来画正三角形吗?正方形呢?正五边形呢?正六边形呢?.学会利用量角器等分圆周的方法画正多边形。 (2)引入圆的内接正多边形、正多边形的外接圆、正多边形的中心的概念。正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距正多边形各边所对的外接圆的圆心角都相等正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角正n边形的每个中心角都等于 3探索正多边形的对称性(1)图中

3、的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中心对称图形,找出它的对称中心。(如果一个正多边形是中心对称图形,那么它的中心就是对称中心。)复备区(2)任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?4探索用直尺和圆规作出正方形,正六多边形的方法。(1)作正四边形:在圆中作两条互相垂直的直径,依次连结四个端点所得图形(如何作正八边形?作正十六边形?)(2)作正六边形:在圆中任作一条直径,再以两端点为圆心,相同的半径为半径作弧与圆相交,依次连结圆上的六个点所得图形(如何作正三角形?正十二边形?)5.

4、典型例题例1、填空题(1)正n边形的内角和为_,每一个内角都等于_,每一个外角都等于_.(2)正n边形的一个外角为24,那么n=_,若它的一个内角为135,则n=_(3)正八边形有_条对称轴,它不仅是_对称图形,还是_对称图形(4)若一个正n边形有n条对角线,则n=_例2、判断题:(1)各边都相等的多边形是正多边形()(2)每条边都相等的圆内接多边形是正多边形()(3)每个角都相等的圆内接多边形是正多边形()例3、(1) 作圆的内接正三角形。(2)已知:如图,正五边形,求作:正五边形的外接圆和内切圆。(要求:保留痕迹,不写作法) 例4、(1)已知:如图1,四边形ABCD是O的内接正方形,点P是

5、劣弧上不同于点C的任意一点,则BPC的度数是() (2)、如图2点M、N分别是正八边形相邻的边AB、BC上的点,且AM=BN,点O是正八边形的中心,则MON= _度复备区例5、(1)、用一张圆形的纸剪一个边长为4cm的正六边形,则这个圆形纸片的半径最小应为_ cm(2)、 若同一个圆的内接正三角形、正方形、正六边形的边心距分别为r1,r2,r3,则r1:r2:r3等于_.(3)、已知正三角形外接圆半径为r,这个正三角形的边长是_例6、如图1、图2分别是两个相同正方形、正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处(1)求图1中,重叠部分面积与阴影部分面积之比;(2)求图2中,重叠部分面积与阴影部分面积之比(直接出答案);(3)根据前面探索和图3,你能否将本题推广到一般的正n边形情况,(n为大于2的偶数)若能,写出推广问题和结论;若不能,请说明理由三、归纳总结1. 理解正多边形和圆的有关概念;2. 掌握正多边形的基本图形;3. 学会了正多边形的画法.四、作业

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服