ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:43KB ,
资源ID:7412338      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7412338.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学上册 12.1平方根与立方根 平方根课时1教案 华东师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学上册 12.1平方根与立方根 平方根课时1教案 华东师大版.doc

1、八年级上12.1平方根与立方根 平方根 课时1 教案三维教学目标知识与技能:1、了解平方根的概念、开平方的概念。会用根号表示一个数的平方根。2、了解平方运算与开平方运算是互为逆运算3、会用平方根的概念求某些非负数的平方根。过程与方法:1、让学生经历概念形成过程,提高学生的思维水平。2、培养学生的求同和求异思维,能从相似的事物中观察到他们的共同点和不同点。情感态度与价值观:1、 创设学生熟悉的问题情景,培养他们对数学的好奇心和求知欲。2、 在学生已有数学经验的基础上,探求新知,让学生获得成功的快乐。3、 提高学生“用数学”的意识。教学重点:会用平方根的概念求某些非负数的平方根。教学难点:对只有非

2、负数才有平方根的理解。课堂导入1、 到目前为止我们已学过哪些运算?2、 一个正方形边长为5厘米,它的面积为多少?是什么运算?它的教学过程一、创设问题情景 学校要举行美术作品比赛,小明很高兴,她想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果画布的面积依次改为:9、16、36那么相应的边长是多少?二、探索归纳(1) 平方根的概念若,则x叫做a的平方根。(2) 举例:5是25的一个平方根问:25的平方根只有一个吗?还有哪些数的平方也等于25?(3)总结求一个数平方根的方法。三、举例应用例1 求100的平方根解 因为10100, (),除了10

3、和以外,任何数的平方都不等于100,所以100的平方根是10和,也可以说,100的平方根是例2求36的平方根。解:因为所以36的平方根为6.四、试一试(1) 144的平方根是什么?(2) 0的平方根是什么?(3)的平方根是什么?(4)的 平方根是什么?(5)0、81的平方根是 什么?(6) 有没有平方根?为什么?答案:(1)请你自己也编三道求平方根的题目,并给出解答。通过以上题目的解答,你发现了什么?概括:一个正数必定有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。五、课堂练习1、平方得81的数是 ,因此81的平方根是 。2、平方根是它本身的数是 。3、如果-b是a的平方根,那么

4、A、; B、 ; C、; D、4、求下列各式中的x的值 答案:1、9,9,2、0 3、B 4、x=16,x=六、课堂小结1、平方根的定义。2、平方根的性质。正数有两个平方根它们互为相反数,0的平方根是0,负数没有平方根。课堂作业1、求下列各数的平方根:(1)49(2)(3)36(4)。2、已知a-1的一个平方根是+,求a-1的另一个平方根及a的值。答案:1、(1) (3)7是49的平方根。 7是49的平方根。(2) (4) 是的平方根。 2是的平方根。2、因为一个数如果有平方根,那么它的两个平方根互为相反数。已知a-1的一个平方根是+,所以a-1的另一个平方根是-。a-1= a=5教学反思易错点:对平方根的意义不理解;对平方与开平方两种运算之间的互逆关系不理解。(1)在求一个正数的平方根时,容易只写正的平方根,丢掉负的平方根。(2)如果已知一个数的一个平方根,求这个数。不知道该怎么做。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服