ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:92KB ,
资源ID:7411599      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7411599.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学上册23.2.3一元二次方程的解法(3)教案华东师大版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学上册23.2.3一元二次方程的解法(3)教案华东师大版.doc

1、23.2 一元二次方程的解法(3)教学目标: 1.使学生熟练地应用求根公式解一元二次方程.2.使学生经历探索求根公式的过程,培养学生抽象思维能力.3.在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点.重点难点:1.难点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程;2.重点:对文字系数二次三项式进行配方;求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误.教学方法:三疑三探教学过程:一、设疑自探解疑合探1、用配方法解下列方程: (1) (2)2、用配方解一元二次方程的步骤是什么?3、用直接开平方法和配方法解一元二次方程,计算

2、比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、质疑再探:问题1:能否用配方法把一般形式的一元二次方程转化为呢?教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让学生分组讨论交流,达成共识: 因为,方程两边都除以,得 移项,得配方,得 即问题2:当,且时,大于等于零吗? 让学生思考、分析,发表意见,得出结论:当时,因为,所以,从而.问题3:在研究问题1和问题2中,你能得出什么结论? 让学生讨论、交流,从中得出结论,当时,一般形式的一元二次方程的根为,即. 由以上研究的结果,得到了一元二次方程的求根公式: () 这个公式说明方程的根是由方程的系数、所确定的,利用这

3、个公式,我们可以由一元二次方程中系数、的值,直接求得方程的解,这种解方程的方法叫做公式法. 思考:当时,方程有实数根吗?三、拓展运用:例1、解下列方程: 1、; 2、;3、; 4、教学要点:(1)对于方程(2)和(4),首先要把方程化为一般形式;(2)强调确定、值时,不要把它们的符号弄错;(3)先计算的值,再代入公式. 例2、(补充)解方程 解:这里, 因为负数不能开平方,所以原方程无实数根.让学生反思以上解题过程,归纳得出:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.四、课堂巩固: 1、35练习. 2、阅读39“阅读材料”.五、课堂小结: 根据你学习的体会,小结一下解一元二次方程一般有哪几种方法?通常你是如何选择的?和同学交流一下.作业设计:38习题4.(3)、(4)、(5)、(6)、(7)、(8),5.教学反思:全 品中考网

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服