ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:137.50KB ,
资源ID:7409640      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7409640.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学下册 3.8 圆内接正多边形教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学下册 3.8 圆内接正多边形教案1 (新版)北师大版-(新版)北师大版初中九年级下册数学教案.doc

1、课题:3.8圆内接正多边形 教学目标:1了解圆内接正多边形的有关概念2理解并掌握正多边形半径和边长、边心距、中心角之间的关系3会用尺规作圆的内接正方形和正六边形教学重点与难点:重点:理解正多边形的中心、半径、中心角、边心距等概念.难点:能运用正多边形的知识解决圆的有关计算问题.课前准备: 教师准备多媒体课件.教学过程:一、创设情境,导入新课活动内容:各小组派代表展示自己课前所调查得到的正多边形形状的物体. 回答下列问题: 问题1:什么叫正多边形? 问题2:正多边形是轴对称图形、中心对称图形吗?其对称轴有几条,对称中心是哪一点?问题3:以对称中心为圆心,以对称中心到正多边形的一个顶点的长为半径画

2、圆,你有何发现?处理方式:学生自己找到正多边形的对称轴和对称中心,画出符合条件的圆.设计意图:通过作图的过程,学生很容易发现圆和正多边形的关系:(1)正多边形的顶点都在圆上;(2)圆经过正多边形的所有顶点.(自然引出课题).二、探究学习,获取新知活动内容一:圆内接正多边形的概念定义:顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.把一个圆等分(),依次连接各分点,我们就可以作出一个圆内接正多边形.如图,五边形是圆的内接正五边形,圆心叫做这个正五边形的中心;是这个正五边形的半径;是这个正五边形的中心角;,垂足为,是这个正五边形的的边心距. 处理方式:学生自学课本97

3、页例题以上内容,对照多媒体上的图形,说出各部分的名称。教师强调:正多边形的中心指的是其外接圆的圆心,半径指的是其外接圆的半径,中心角指的是其每一边所对的外接圆的圆心角.设计意图:让学生了解有关正多边形的概念,引导学生逐步深入的学习. 活动内容二:求正多边形的中心角、边长和边心距例 如图,在圆内接正六边形中,半径,垂足为,求这个正六边形的中心角、边长和边心距.处理方式:引导学生发现正六边形的中心角的一半、边长和边心距构成一个直角三角形,利用解直角三角形的知识解决问题.教师多媒体展示解答过程:解:连接. 六边形为正六边形.为等边三角形.在中,.正六边形中心角为,边长为4,边心距为.设计意图:通过例

4、题的学习,巩固有关正多边形的概念,能运用解直角三角形的知识解决正多边形的有关计算问题.教师强调:正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.活动内容三:1、用尺规作一个已知圆的内接正六边形. 2、用尺规作一个已知圆的内接正四边形. 3、思考:作正多边形有哪些方法?处理方式:由例题引导学生发现正六边形的边长等于其半径,从而找到六等分圆的方法.设计意图:使学生理解并掌握可用等分圆心角的方法等分圆周,从而用直尺和圆规可以作出一些特殊的正多边形.三、训练反馈,应用提升活动内容: 1.把边长为6的正

5、三角形剪去三个三角形得到一个正六边形DFKKGE,求这个正六边形的面积.2、分别求出半径为6的圆内接正三角形的边长和边心距.处理方式:学生口述思考过程,并说明理由.两位同学黑板板书做题过程.设计意图:本组试题主要是巩固正多边形的有关计算,让学生熟练转化为解直角三角形的知识解决问题.四、回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家处理方式:学生畅谈自己的收获! 设计意图:课堂小结是培养好学生反思、总结习惯的最好环节,只有学生养成良好的反思总结习惯,才能不断的取得进步,让学生在每堂课中体会小结的意义 五、达标检测,反馈提高活动内容:完成达标小卷(多媒体出示)1.正三角形的边心距、半径和高的比是( ) A.1:2:3 B.1: C.1:3 D.1:2:2. 求出半径为6的圆内接正四边形的边长、边心距和面积.处理方式:学生在8分钟内独立完成后,两生分别说明思考过程,同位互换批改,不明白的问题利用1分钟时间交流、改正. 设计意图:让学生利用当堂达标检测自己的学习效果,题目既考查基础,给学生学习的信心和成功的体验,又具有一些挑战性,考查学生综合应用知识的能力.六、布置作业,课堂延伸 基础作业:课本P99 习题3.10,第4题拓展作业:课本P99 问题解决板书设计:3.8圆内接正多边形有关概念想一想学生展示区

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服