ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:276KB ,
资源ID:7408644      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7408644.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(九年级数学 正多边形和圆 教案人教版.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

九年级数学 正多边形和圆 教案人教版.doc

1、24.3 正多边形和圆教学任务分析教学目标知识技能使学生经历正多边形的形成过程,了解正多边形的有关概念,掌握用等分圆周画圆的内接正多边形的方法数学思考 使学生丰富对正多边形的认识,通过设计图案,发展学生的形象思维.解决问题 使学生会等分圆周,利用等分圆周的方法构造正多边形,并会设计图案,发展学生的实践能力和创新精神.情感态度通过等分圆周、构造正多边形等实践活动,使学生在数学学习活动中获得成功的体验,建立自信心 重点 了解圆与正多边形的关系;掌握用量角器等分圆心角来等分圆,从而得到正多边形和尺规作圆内接正方形和正六边形的方法难点 对正n边形中“n”的接受和理解. 板书设计 正多边形和圆正多边形的

2、概念:等分圆周的方法:课后反思教学过程设计问题与情境师生行为设计意图活动一:复习提问1.什么样的图形叫做正多边形? 展示图片(课本P113页图片),你还能举出一些这样的例子吗?2.正多边形与圆有什么关系呢? (引出课题)活动二:等分圆周问题:为什么等分圆周就能得到正多边形呢? 教师提出问题,学生进行回答:各边相等,各角相等的多边形叫做正多边形并举出生活中的例子教师可再展示一些图片让学生欣赏学生根据教师提出的问题进行思考,回忆圆的有关知识,进而回答教师提出的问题即等分圆周,就可以得到圆内接正多边形,这个圆叫做这个正多边形的外接圆教师提出问题后,学生认真思考、交流,充分发表自己的见解,并互相补充教

3、师在学生归纳的基础上进行补充,并以正五边形为例进行证明 复习正多边形的概念,为今天的课程做准备 激发学生的学习兴趣培养学生的思维品质,将正多边形与圆联系起来并由此引出今天的课题教学过程设计问题与情境师生行为设计意图 活动三:如何等分圆周呢?图1 图2图3问题: 已知O的半径为2cm,求作圆的内接正三角形 教师在学生思考、交流的基础上板书证明过程:如图, 同理可证: 五边形是正五边形 A、B、C、D、E在O上, 五边形ABCDE是圆内接正五边形教师提出问题后,学生思考、交流自己的见解,教师组织学生进行作图,方法不限 以下为解决问题的参考方案:(上课时教师归纳学生的方法)(1)度量法:用量角器或3

4、0角的三角板度量,使=CAO=30,如图1用量角器度量,使=120,如图2(2)尺规作图:用圆规在O上截取长度等于半径(2cm)的弦,连结、即可,如图3(3)计算与尺规作图结合法:由正三角形的半径与边长的关系可得,正三角形的边长= R=2(cm),用圆规在O上截取长度为2(cm)的弦、,连结、即可 使学生理解、体会圆与正多边形的内在联系充分发展学生的发散思维让学生充分利用手中的工具,实际操作,认真思考,从而培养学生的动手能力教学过程设计 问题与情境师生行为设计意图在师生共同作图的基础上,归纳出:正多边形与圆有着密切的联系如:圆既是轴对称图形,又是中心对称图形,且它的每一条直径所在的直线都是它的

5、对称轴,圆具有旋转不变性正多边形也是轴对称图形,正n边形有n条对称轴,当n为偶数时,它也是中心对称图形,且绕中心旋转,都能和原来的图形重合结合图4,给出正多边形的中心、半径、中心角、边心距等概念 同样说明正多边形与圆有着很多内在的联系图4活动四:实际应用参照图5,按照一定比例,画一个停车让行的交通标志的外缘 在学生作图的基础上,教师归纳出等分圆周的方法: 1.用量角器等分圆:依据:同圆中相等的圆心角所对应的弧相等操作:两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个圆心角,然后在圆上依次截取等于该圆心角所对弧的等弧,于是得到圆的等分点,这种方法比

6、较方便,但画图的误差积累到最后一个等分点,使画出的正多边形的边长误差较大 2.用尺规等分圆:(1)作正四边形、正八边形教师组织学生,分析、作图归纳:只要做出已知O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与O相交,或作各中心角的角平分线与O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形(2)作正六、三、十二边形教师组织学生,分析、作图归纳:先做出正六边形,则可作正三角形,正十二边形,正二十四边形理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画教师提出问题后,学生认真思考,并在笔记本上试着作图,再与

7、同学进行交流教给学生等分圆周的方法,尤其是尺规作正方形、正六边形 使学生体会随着正多边形边数的增多,正多边形越来越接近圆 教学过程设计问题与情境师生行为设计意图图5活动五:方案设计 某学校在教学楼前的圆形广场中,准备建造一个花园,并在花园内分别种植牡丹、月季和杜鹃三种花卉。为了美观,种植要求如下:(1)种植4块面积相等的牡丹、4块面积相等的月季和一块杜鹃。(注意:面积相等必须由数学知识作保证)(2)花卉总面积等于广场面积(3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与牡丹花没有公共边。请你设计种植方案:(设计的方案越多越好;不同的方案类型不同)活动六:课堂小结 1.本节课中,你有什么收获

8、与大家交流? 2. 布置作业:P116页:练习;P117页:2,4.并与大家交流 教师要关注学生对问题的理解,对等分圆周方法的掌握程度教师提出问题后,让学生认真思考后,设计出最美的图案,并用实物投影展示自己的作品要求尺规作图;说明画法;指出作图依据;学生独立完成教师巡视,对画的好的学生给予表扬,对有问题的学生给予指导学生归纳总结本节课的内容,教师作补充教师布置作业,学生记录应用等分圆周的方法作图发展学生作图的能力,对学生进行美的教育,发展学生作图能力巩固本节课所学的内容 扩展资料:1.我国民间相传有五边形的近似画法,画法口诀是:“九五顶五九,八五两边分”,它的意义如图:如果正五边形的边长为10

9、,作它的中垂线,取=15.4,在上取=9.5,则=5.9,过点作,在上取=8连结、即可 例:用民间相传画法口诀,画边长为20mm的正五边形分析:要画边长20mm的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例由已知知道要画正五边形的边=20mm请同学们算出各部分的尺寸,并按口诀画出正五边形2.尺规作正五边形(1) 在O中作互相垂直的两条直径和;(2) 取半径的中点,以点为圆心,为半径作弧,交于点;(3) 以点为圆心,为半径作弧,交O于、N;(4) 分别心M、N为圆心,以AE为半径作弧,交O于P、Q 则

10、D、M、P、Q、N就是O的五等分点3. 小圆覆盖大圆“覆盖问题”在实际中经常遇到,如三颗同步通信卫星就可以覆盖整个地球,一个物体能否覆盖住另一个物体等等下面举一个日常生活中的问题:在一场演出中,根据需要必须用灯光照亮舞台中一个半径为2米的圆形区域,但不巧,当时没有这样的灯,舞台监督要求用另一种可照半径l米的灯光代替,使其灯光照到指定区域的每一点那么这样至少需几盏代用灯?我们用数学语言叙述即最少需要几个半径为l的圆才能完全覆盖半径为2的圆?(各圆可相互叠放)设半径为2的圆的圆心是O,在圆周上作正六边形ABCDEF,其边长都是2再分别以各边中点为圆心作六个半径为l的圆(见图)各圆的圆周除相交于A,B,C,D,E,F各点外,还相交于Al,Bl,Cl,Dl,El,Fl各点并构成边长为l的正六边形的顶点涂线部分只要以O为圆心并以半径l作圆即可覆盖,一共要七个圆不难看出只用六个小圆是不行的大圆的圆周必需有六个小圆才能盖满,这时中央的小圆是不可缺少的

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服