ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:7.06KB ,
资源ID:7395345      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7395345.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【仙人****88】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【仙人****88】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(可化为一元二次方程的分式方程.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

可化为一元二次方程的分式方程.doc

1、可化为一元二次方程的分式方程一、教学目标1使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.2通过本节课的教学,向学生渗透“转化”的数学思想方法;3通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.二、重点难点疑点及解决办法1教学重点:可化为一元二次方程的分式方程的解法2教学难点:解分式方程,学生不容易理解为什么必须进行检验3教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性4解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用

2、换元法解(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤(3)方程的增根具备两个特点,它是由分式方程所转化成的整式方程的根它能使原分式方程的公分母为0.三、教学步骤(一)教学过程1复习提问(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?(3)解方程,并由此方程说明解方程过程中产生增根的原因.通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生

3、对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.2例题讲解例1 解方程.分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.解:两边都乘以,得去括号,得整理,得解这个方程,得检验:把代入,所以是原方程的根. 原方程的根是.虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些学生容易犯的类型错误应加以强调,

4、如在第一步中需强调方程两边同时乘以最简公分母另外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调例2 解方程分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母解:方程两边都乘以,约去分母,得整理后,得解这个方程,得检验:把代入,它不等于0,所以是原方程的根,把代入它等于0,所以是增根 原方程的根是师

5、生共同解决例1、例2后,教师引导学生与已学过的知识进行比较例一、教学目标1使学生掌握可化为一元二次方程的分式方程的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根.2通过本节课的教学,向学生渗透“转化”的数学思想方法;3通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.二、重点难点疑点及解决办法1教学重点:可化为一元二次方程的分式方程的解法2教学难点:解分式方程,学生不容易理解为什么必须进行检验3教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性4解决办法:(l)分式方程的解法顺序是:先特殊、后

6、一般,即能用换元法的方程应尽量用换元法解(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤(3)方程的增根具备两个特点,它是由分式方程所转化成的整式方程的根它能使原分式方程的公分母为0.三、教学步骤(一)教学过程1复习提问(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?(3)解方程,并由此方程说明解方程过程中产生增根的原因.通过(1)、(2)、(3)的准备,可直接点出本节的内容:可化为一元二次方程的分式方程的解法相同.在教师点出本节内容的处理方法与以前

7、所学的知识完全类同后,让全体学生对照前面复习过的分式方程的解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量.在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力.2例题讲解例1 解方程.分析 对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程中,发现问题并及时纠正.解:两边都乘以,得去括号,得整理,得解这个方程,得检验:把代入,所以是原方程的根. 原方程的根是.虽然,此种类型的方程在初二上学期已学习过,但由于相隔时间比较长,所以有一些

8、学生容易犯的类型错误应加以强调,如在第一步中需强调方程两边同时乘以最简公分母另外,在把分式方程转化为整式方程后,所得的一元二次方程有两个相等的实数根,由于是解分式方程,所以在下结论时,应强调取一即可,这一点,教师应给以强调例2 解方程分析:解此方程的关键是如何将分式方程转化为整式方程,而转化为整式方程的关键是正确地确定出方程中各分母的最简公分母,由于此方程中的分母并非均按的降幂排列,所以将方程的分母作一转化,化为按字母终X进行降暴排列,并对可进行分解的分母进行分解,从而确定出最简公分母解:方程两边都乘以,约去分母,得整理后,得解这个方程,得检验:把代入,它不等于0,所以是原方程的根,把代入它等

9、于0,所以是增根 原方程的根是师生共同解决例1、例2后,教师引导学生与已学过的知识进行比较 解分式方程的基本思想在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程转化为整式方程;.即分式方程转化为整式方程;解分式方程的基本方法(1)去分母法去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的公最简分母为,使分式方程转化为整式方程;.但要注意,可能会产生增根.所以,必须验根.产生增根的原因:当公分最简母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这

10、时得到的整式方程的解不一定是原方程的解.检验根的方法:将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等.为了简便,可把解得的根直接代入最简公分母中,如果不使为等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去.注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0.用去分母法解分式方程的一般步骤:(i)去分母,将分式方程转化为整式方程;(ii)解所得的整式方程;(iii)验根做答(2)换元法为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,

11、使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程.用换元法解分式方程的一般步骤:(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;(iii)把辅助未知数的值代回原设中,求出原未知数的值;(iv)检验做答.注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法.它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程.(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法.(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服