ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:134.50KB ,
资源ID:7390075      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7390075.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【pc****0】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【pc****0】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(互斥事件1 苏教版必修3概率教案与ppt课件[全套].doc)为本站上传会员【pc****0】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

互斥事件1 苏教版必修3概率教案与ppt课件[全套].doc

1、【课题】34互斥事件(1) 【教学目标】(1)了解互斥事件及对立事件的概念,能判断某两个事件是否是互斥事件,进而判断它们是否是对立事件(2)了解两个互斥事件概率的加法公式,知道对立事件概率之和为1的结论会用相关公式进行简单概率计算(3)注意学生思维习惯的培养,在顺向思维受阻时,转而逆向思维【教学重点】互斥事件和对立事件的概念,互斥事件中有一个发生的概率的计算公式【教学过程】一、问题情境1情境: 体育考试的成绩分为四个等级:优、良、中、不及格,某班50名学生参加了体育考试,结果如下:优85分及以上9人良75-84分15人中60-74分21人不及格60分以下5人2问题:在同一次考试中,某一位同学能

2、否既得优又得良?从这个班任意抽取一位同学,那么这位同学的体育成绩为“优良”(优或良)的概率是多少?二、学生活动体育考试的成绩的等级为优、良、中、不及格的事件分别记为在同一次体育考试中,同一人不能同时既得优又得良,即事件是不可能同时发生的在上述关于体育考试成绩的问题中,用事件表示事件“优”和“良”,那么从50人中任意抽取1个人,有50种等可能的方法,而抽到优良的同学的方法有9+15种,从而事件发生的概率 另一方面,因此有三、建构数学1互斥事件不能同时发生的两个事件称为互斥事件2互斥事件的概率 如果事件,互斥,那么事件发生的概率,等于事件,分别发生的概率的和,即 一般地,如果事件两两互斥,则3对立

3、事件两个互斥事件必有一个发生,则称这两个事件为对立事件事件的对立事件记为对立事件和必有一个发生,故是必然事件,从而因此,我们可以得到一个重要公式思考:对立事件和互斥事件有何异同?四、数学运用1例题:例1 一只口袋内装有大小一样的4只白球与4只黑球,从中一次任意摸出2只球记摸出2只白球为事件,摸出1只白球和1只黑球为事件问事件和是否为互斥事件?是否为对立事件?解 事件和互斥因为从中一次可以摸出2只黑球,所以事件和不是对立事件例2 某人射击1次,命中7-10环的概率如下表所示:命中环数10环9环8环7环概率012018028032(1) 求射击一次,至少命中7环的概率;(2) 求射击1次,命中不足

4、7环的概率解 记事件“射击1次,命中环”为则事件两两相斥(1)记“射击一次,至少命中7环”的事件为,那么当,或之一发生时,事件发生由互斥事件的概率加法公式,得=(2)事件“射击一次,命中不足7环”是事件“射击一次,命中至少7环”的对立事件,即表示事件“射击一次,命中不足7环”根据对立事件的概率公式,得答 此人射击1次,至少命中7环的概率为0.9;命中不足7环的概率为0.1例3 黄种人群中各种血型的人所占的比如下表所示:血型ABABO该血型的人所占比/%2829835 已知同种血型的人可以输血,O型血可以输给任一种血型的人,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血小明是B型

5、血,若小明因病需要输血,问:(1) 任找一个人,其血可以输给小明的概率是多少?(2) 任找一个人,其血不能输给小明的概率是多少?解 (1)对任一人,其血型为A,B,AB,O型血的事件分别记为它们是互斥的由已知,有因为B,O型血可以输给B型血的人,故“可以输给B型血的人”为事件根据互斥事件的加法公式,有(2)由于A,AB型血不能输给B型血的人,故“不能输给B型血的人”为事件,且答 任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36注 :第(2)问也可以这样解:因为事件“其血可以输给B型血的人”与事件“其血不能输给B型血的人”是对立事件,故由对立事件的概率公式,有 2练习:(1)如果事件A、B互斥,那么 ( ) A+B是必然事件 +是必然事件 与一定互斥 与一定不互斥(2)在房间里有4个人,问至少有两个人的生日是同一个月的概率是多少?(3)课本108页 练习1,2,3 五、回顾小结:1互斥事件和对立事件的概念;2互斥事件中有一个发生的概率的计算公式;3对立事件的概率间的关系六、课外作业:课本第108页第1、2、3、4题【后记】

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服